In this blog post, I demonstrate a Python code, that shows how to perform various matrix operations such as:

1. Defining a matrix,

2. Adding matrices

3. Multiplying two matrices,

4. Transposing a Matrix

5. Determinant of a matrix,

6. Inverse of a matrix,

7. Eigenvalues and eigenvectors of a matrix,

using the SciPy package and the lining module within it.

The documentation for SciPy lining is: https://docs.scipy.org/doc/scipy-0.14.0/reference/linalg.html

The code is pretty much self-explanatory, although you can also watch the YouTube video below it where I walkthrough the code.

### CODE:

import numpy as np from scipy import linalg as lg #Defining a matrix A A = np.array([ [1, 2] , [3, 4] ]) #Defining matrix B B = np.array([ [6, 1], [5, 1] ]) #Addition sum1 = A+B #Subtraction diff = A-B #Multiplication prod = A.dot(B) #Transpose transpose = A.T #Determinant determinantB = lg.det(B) #Inverse (if non-singular) inverse = lg.inv(B) #Eigenvalues, Eigenvectors of square matrix values, vectors = lg.eig(B) #Print Matrix A print(A) #Print Matrix B print(B) #Print A+B print(sum1) #Print A-B print(diff) #Print A*B print(prod) #Print A' print(transpose) #Print det(B) print(determinantB) print(inverse) print(values) print(vectors)

### YouTube Tutorial

[wpedon id="7041" align="center"]

Hello Manas Sharma, I am an engineering professor in Brazil, and I really enjoyed your Blog. I am interested in making applications in the robotics area using Python.

I’m trying to apply concepts from Kinematics theory based on Denavit-Hartenberg using python.

If you have any applications on this subject and can show it I would appreciate it.

Thanks,

Cristian Duarte

[email protected]