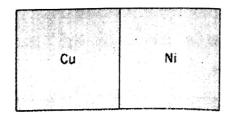
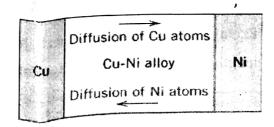
M. Sc. Physics, Semester-IV

Internal Assessment Examination March-2018

Paper: PHYS 531-Part-II - Physics at Nanoscale

Time: 1 Hour


Total Marks: 20


Attempt all the questions as directed

Q1: Answer all the questions

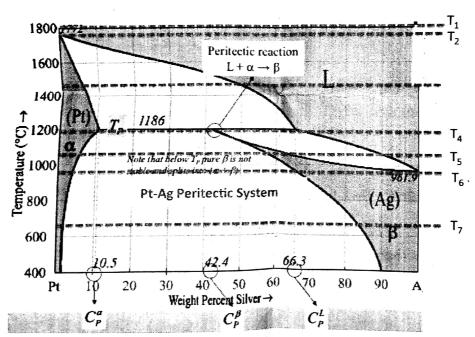
1x5=5

- i. Which pump(s) could provide a vacuum of 10-9 T?
 - (a) Tarbomolecular pump, (b) Diffusion pump
 - (c) Roughing pump, (d) Ion pump
- ii. A metal thin film was planned to deposit over semiconducting material for electrical contacts. Which growth technique(s) would be suitable for this deposition?
 - (a) Molecular beam epitaxy, (b) Sputtering
 - (c) Thermal deposition, (d) Metal organic chemical vapor deposition
- iii. What is the isothermal compressibility $\kappa = -\frac{1}{v} \left(\frac{\partial V}{\partial p}\right)_T$ for an ideal gas?
 - (a) -1/V, (b) 1/T, (c) 1/P, (d) nRT/P
 - iv. Cu/Ni alloy is formed by diffusion process as shown in the figure below. Draw the concentration of Cu and Ni w. r. t. the distance.

Contd

v. Two atomic wires (W_1 and W_2) contain 5 and 10 atoms, respectively, have in the ballistic transport region. Their respective resistances (R_1 and R_2) will show,

(a)
$$R_1 = \frac{1}{2} R_2$$
, (b) $R_1 = 2 R_2$, (c) $R_1 = R_2 \neq 0$, (d) $R_1 = R_2 = 0$


Q2: Answer all the questions

2x3=6

- i. Find the difference between first two energy levels of a ultrathin film of thickness 10 nm.
- ii. Draw the schematics for the Gibbs' free energy (G), Enthalphy (H), and specific heat at constant pressure (C_p) w. r. t. the temperature variation, for a second order phase transformation.
- iii. The vapor pressure of diethyl ether is 100.0 torr at -11.5°C and 400.0 torr at 17.9°C. Calculate the enthalpy of vaporization of diethyl ether.

Q3: Answer all the questions

6+3=9

- i. Draw the Gibbs' free energy diagrams at different temperatures T_1 T_6 for the monotectic system showing the phase transition as in the diagram.
- ii. Explain with schematics: The steps to grow GaN transistors with 2 μ m channel length using various deposition techniques.

------x-----x-----x------x