ASTRONOMY & ASTROPHYSICS-II (PHYS-575)

INTERNAL ASSESSMENT (MARCH 8, 2018)

(Answer any two questions.)

Time: 1 hrs 30 min

Maximum Marks: 30

1. For a spherically symmetric star (with total mass M_0 , radius R, density $\rho(r)$ and pressure P(r)) in hydrostatic equilibrium, where r is the radial distance from the centre of the star,

(a) show that,

$$\int_0^R \frac{GM(r)}{r^3} dM(r) = 4\pi \int_0^R P(r) dr ,$$

where M(r) is the mass enclosed within the radius r.

(6)

(b) Prove that,

$$P_c \le P(r) + \frac{1}{2}G\left(\frac{4\pi}{3}\right)^{1/3}\rho_c^{4/3}M^{2/3}(r)$$

given that,

$$P_{\rm c} > P(r) + \frac{GM^2(r)}{8\pi r^4} > \frac{GM_0^2}{8\pi R^4}$$
 ,

where $P_c \equiv P(0)$ and $\rho_c \equiv \rho(0)$ are the central pressure and central density, respectively.

(9)

2. Consider a highly conducting magnetosphere near the surface of an aligned rotator spinning with an angular velocity $\vec{\omega} = \omega \hat{k}$ and having a magnetic dipole moment $\vec{\mu} = \frac{1}{2}B_pR^3\hat{k}$. Assuming that a electric charge density ρ_e and a macroscopic current density $J_e = \rho_e \vec{v} = \rho_e (\vec{r} \times \vec{\omega})$ develops near the surface of the rotating neutron star, show that,

$$\rho_{e} = -\frac{1}{2\pi c} \vec{\omega} \cdot \vec{B} \left(1 - \frac{v^{2}}{c^{2}} \right)^{-1} . \tag{15}$$

3. (a) Assuming the Robertson-Walker line element $ds^2 = c^2 dt^2 - a^2(t)[dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)]$ for k = 0, show that the corresponding luminosity distance is given by,

$$D_L(z) = \frac{2c}{H_0} [1 + z + \sqrt{1+z}]$$

given that
$$a(t) = A t^{2/3}$$
, $D_L(z) = a(t_0) (1+z) r(z)$ and $H_0 = \frac{2}{3 t_0}$. (10)

(b) A spinning star of initial radius R_i , period of rotation $P_i = 3 \times 10^8$ s and surface magnetic field $B_i = 10^3$ G collapses to form a neutron star with surface magnetic field $B_f = 10^{13}$ G. Find the final period of rotation of the neutron star. (5)