University of Delhi Department of Physics and Astrophysics M.Sc. Physics (Semester IV)

PHY580: Advanced Numerical Techniques
Final Examination (2018)

Time: 1.5 hours

Maximum Marks: 40

Some useful equations are given on the backside of this question paper.

Instructions:

- Please write down your name, roll number and college name on the question paper as well as the answer book.
- Use your home area to make the program. (Do not make any subdirectory.)
- Please name your program and other files using the following convention: finalant-2018-FirstName.c. Use the same convention to name any other file.
- It is compulsory to write the entire C program in the answer book.

Question: The dataset $\{x_i,y_i\}$, where i=1,2,...7, given below is to be fitted using a Cubic spline, $y(x)=Ay_j+By_{j+1}+Cy_j^{"}+Dy_{j+1}^{"}$ where A,B,C, and D have their usual meanings. Use Natural boundary conditions; $y_1^{"}=0$ and $y_7^{"}=0$.

x_i	0	6	10	13	17	20	28
y_i	6.67	17.33	42.67	37.33	30.10	29.31	28.74

- 1. Obtain the tridiagonal set in the Matrix form Py'' = Q that will provide y''_j , where j = 2, 3...6. **Print** the matrices P (dimension: 5x5) and Q (dimension: 5x1).
- 2. Solve the tridioagnal set using Gauss Elimination method to obtain y''_j . Print the matrix y'' (dimension: 5x1).
- 3. Using A, B, C, D and y_j'' , obtain the value of the Cubic spline y(x) at x = 12.
- 4. Plot the Cubic spline function y(x) from x = 0 to x = 28 in steps of x = 1.

University of Delhi Department of Physics and Astrophysics M.Sc. Physics (Semester IV) PHY580: Advanced Numerical Techniques

Final Theory Examination (2018)

Time: 1.5 hours

Maximum Marks: 30

This paper contains only one page.

All questions are compulsory.

- 1. (a) For the three data-points, $x_0 = 3$, $x_1 = 8$, and $x_2 = 15$, find the second Lagrange interpolating polynomial for the function $f(x) = \sqrt{1+x}$.
 - (b) Use this interpolating polynomial to estimate the value of the function f(x) at x = 9.
- 2. (a) The dataset $\{x_i, y_i, \sigma\}$ has to be fitted using the function $f(x) = Ax Bx^3$, where A and B are the two unknown parameters, and i=1,2...N. Here, σ is the constant error
 - i. Set-up the χ^2 function for this curve-fitting problem.
 - ii. Using the χ^2 minimization technique, derive the minimization equations.
 - iii. Solve the minimization equations to estimate the best-fit values of the parameters

- (b) How would the values of the best fit parameters A and B change, if each value of y_i has a different error σ_i . Answer briefly (derivations are not required).
- 3. Let x be a random variable distributed according to the following probability distribution

$$f(x) = Nx^{\beta-1} \exp(-\frac{x^{\beta}}{\alpha})$$

where α and β are two free parameters, and $x \geq 0$; α , $\beta > 0$.

- (a) Find the normalization constant N of the probability distribution function.
- (b) Let u be a random variable distributed according to the uniform distribution in the interval [0,1]. Using the inverse transformation method, express x in terms of u.

(3+7=10)