This question paper cont	ains 4 printed pages		•	
		Roll No.		
S. No. of Question Paper	: 48			
Unique Paper Code	: 235466		E .	
Name of the Paper	: MAPT-404 : Differe	ntial Equations	•	
Name of the Course	: B.Sc. (H) Comp. Sc.,	B.Sc. (Appl. P	hy. Sc.) Analytical	
	Chemistry/Industria	l Chemistry/B.	Sc. Mathematical	
	Science/B.Sc. Physic	al Science		
Semester	: IV			
Duration: 3 Hours			Maximum Mark	s:75
(Write your Ro	Il No. on the top immedia	ately on receipt	of this question paper.)	
	Attempt two parts f	rom each quest	ion.	
	All questions ar	e compulsory.		
	Marks are indicated a	gainst each que	estion.	
	Uni	t I	·	
1. (a) Solve:				61/2
· (y	$\sec^2 x + \sec x \tan x$	$dx + (\tan x + 2)$	y) dy = 0.	
(b) Solve:			. · · · .	61/2
	$(x^2+y^2+2x)d$	dx + 2ydy = 0.		
(c) Solve:				61/2
	$xp^2 - 2yp$	+ax=0.		

61/2

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{2x} \sin x.$$

$$x^{2}\frac{d^{2}y}{dx^{2}}-5x\frac{dy}{dx}+8y=2x^{3}, x>0.$$

- (c) Show that the Wronskian of two solutions of the second order homogeneous linear differential equation $a_0(x) \frac{d^2y}{dx^2} + a_1(x) \frac{dy}{dx} + a_2(x) y = 0$, is either identically zero or never zero on $a \le x \le b$, where a_0 , a_1 and a_2 are continuous real functions on real interval $a \le x \le b$, and $a_0(x) \ne 0$ for any x on $a \le x \le b$.
- 3. (a) Using method of variation of parameters, solve the differential equation: 6½

$$\frac{d^2y}{dx^2} + 4y = \sec^2 2x.$$

(b) Given that
$$y = x$$
 is a solution of

$$(x^2 - 1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0,$$

find a linearly independent solution by reducing the order. Write the general solution.

- (c) A large tank initially contains 100 gal of pure water. Starting at t = 0, a brine containing 4 lb of dissolved salt per gallon flows into the tank at rate of 5 gal/min. The mixture is kept uniform by stirring, and the stirred mixture simultaneously flows out at the slower rate of 3 gal/min.
 - (i) How much salt is in the tank at the end of 20 min?
 - (ii) How much salt is present after a long time?

48

4. (a) Solve:

61/2

$$\frac{dx}{dt} + 4x + 3y = t,$$

$$\frac{dy}{dt} + 2x + 5y = e^t.$$

(b) Solve:

61/2

$$\frac{dx}{x^2 - y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}.$$

(c) Solve:

61/2

$$zy\ dx = zx\ dy + y^2\,dz.$$

Unit II

5. (a) Eliminate the arbitrary function f from the equation:

$$-z = f\left(\frac{xy}{z}\right)$$

to form the corresponding partial differential equation.

51/2

(b) Find the general solution of the differential equation :

51/2

$$(y + x) px = (x + y)qy - (x - y)(2x + 2y + z).$$

(c) Find the complete integral of the equation:

51/2

$$xp + 3yq = 2(z - x^2q^2).$$

P.T.O.

4) 48

6. (a) Find the complete integral of the equation:

$$(p^2+q^2)y=z.$$

(b) Show that the equations:

$$xp = yq$$
, $z(xp + yq) = 2xy$

are compatible and find their solution.

(c) Reduce the equation:

$$\frac{\partial^2 z}{\partial x^2} - x^2 \frac{\partial^2 z}{\partial \tilde{y}^2} = 0$$

to canonical form.