			contains	4 . 4	• , 1	
Thie	anestion	naner	contains	4+1	nnntea	nagesi
1 1112	question	puper	Contains		Printed	P0-1

Roll	110.			1							1 1	

S. No. of Question Paper: 8142

Unique Paper Code

: 235485

D

Name of the Paper

: Elements of Analysis [MT-III]

Name of the Course

: B.A. (Hons.) Economics (Part II)

Semester

: **IV**

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

There are 3 Sections.

Attempt all the Sections.

Marks are indicated against each question.

Section I

Attempt any three questions.

1. (a) State and prove the Archimedean property of real numbers.

5

(b) Define the supremum and infimum of a set S of real numbers. Find the supremum and

infimum of the following set:

5

$$S = \left\{1, 1 + \frac{1}{2}, 1 + \frac{1}{2} + \frac{1}{2^{2}}, ..., 1 + \frac{1}{2} + \frac{1}{2^{2}} + + \frac{1}{2^{n-1}},\right\}.$$

P.T.O.

5

5

2. (a) State Cauchy's general principle of Convergence. Use this to show that the sequence (a_n) , where :

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

is not convergent.

(b) Show, by definition:

$$\lim_{n\to\infty} \sqrt[n]{n} = 1.$$

3. (a) If (a_n) and (b_n) are two convergent sequences with:

$$\lim(a_n) = a, \lim(b_n) = b,$$

show that sequence $(a_n + b_n)$ is also convergent and:

$$\lim(a_n + b_n) = (a + b).$$

(b) Show that:

$$\lim_{n\to\infty}\frac{\left(1+y\right)^n}{n!}=0$$

for all y.

4. (a) Define monotonic sequence. Define (a_n) as:

$$a_1 = 8$$
, $a_{n+1} = 2 + \frac{1}{2}a_n$.

Show that (a_n) is monotonic and bounded. Also find its Limit.

(b) State Cauchy's 2nd theorem on limits. Prove that:

5

$$\left\{\frac{(2n)!}{(n!)^2}\right\}^{\frac{1}{n}} = 4.$$

Section II

Attempt any two questions.

5. (a) State Ratio test for the positive term series.

2.5

(b) Show that the series:

5

$$1 + \frac{1}{2!} + \frac{1}{3!} + \dots$$

is convergent.

(c) Test for the convergence:

. 5

$$\left(\frac{1}{3}\right)^2 + \left(\frac{1.2}{3.5}\right)^2 + \left(\frac{1.2.3}{3.5.7}\right)^2 + \dots$$

6. (a) Does the series:

$$\sum \cos \frac{1}{n}$$

converge? Justify.

2.5

P.T.O.

(b) Test for the convergence of the series:

(i)
$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n + 1}$$

5

$$(ii) \quad \sum_{n=1}^{\infty} \frac{n^{n^2}}{\left(n+1\right)^{n^2}}.$$

5

7. (a) State Leibnitz test for the convergence of Infinite series.

2.5

(b) Test for the convergence and absolute convergence of the following series:

(i)
$$\frac{1}{1.2} - \frac{1}{3.4} + \frac{1}{5.6} - \frac{1}{7.8} + \dots$$

5

(ii)
$$\sum_{n=2}^{\infty} \frac{\left(-1\right)^n}{\log n}.$$

5

Section III

Attempt any two questions.

8. Determine the radius of convergence of the following power series:

5+:

(i)
$$\sum_{n=1}^{\infty} \frac{n!^2 x^n}{(2n)!^2}$$

$$(ii) \quad \sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n}$$

8142

9. (a) Write down the power series expansion for $\cos x$.

5

(b) Prove the identity:

5

$$C^2(x) + S^2(x) = 1,$$

for all $x \in IR$, where S(x), C(x) denote the Sine and Cosine functions respectively.

10. (a) Prove that if R is the radius of convergence of the power series:

$$\sum a_n x^n,$$

then the series is absolutely convergent if |x| < R.

5

(b) Show that:

5

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, -1 < x < 1.$$