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There are 3 Sectioﬁs.
Attempt a;l‘l the Sections.
Mark‘s zi:re indicatcd against each QUestion. : |
Section I
Atterhpt any threé questions.
g, (a) State and proVe the .Archimedean property of real numbérs. o 5 -

(b) Define the supfemum and inﬁmum of a set S of real numbers. Find the supremum and

infimum of the following set :
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State Cauchy’s general principle of Convergence. Use this to show that the sequence

(a,), where :

1 1 1
a, =1+ -+ =+ ... + —
2 3 n
is not convergent,
Show, by definition :
lim "Jn = 1
n—w )
“If (a,) and (b,) are two convergent sequences with :

lim(an) = a, lim(b,) = b,

- show that sequence (a, + b,) is also convergent and :

lim(a, + b,) = (a + b).

Show that :
1+ y)
im LX)
n—> n!
for all y.
- Define monotonic sequence. Define (a,)as:

a, =8, a,, =2+ %an_

Show that (a,)) is monotonic and bounded. Also find its Limit.
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(b) State Cauchy’s 2nd theorem on limits. Prove that :

Section II.

Attempt any fwo questions.

(@) _Staté Ratio test for the positive term series.

-

(b) Show that the series :

is convergent.

(¢) Test for the convergence :
(1Y 1.2)2 1.2.3)2
o+ =| +|=—=] *
3 3.5 3.5.7
(a) Does the series :
T,
cos—
_ n

converge ? Justify.

.........
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(b) Test for the cbnyergenée of the series :

- 2n—1 . ' A : :
r(i),ZB'Hl" : o - S

n=1 _
o L
(a) State ‘Lei’bnitz test for the convergence of Inﬁnite series. : . 25

A

(b) Test for the convergence and absolute convergence of the folIoWing series :

n=2
Section III
Att_gmpt any fwo questions. . | ' _ .
Determine the radius of convergence of the following power series : - 545
T ni2xt é
® ; (2n)!2

o (x-1)"
o Y
n=1-
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9. (@ Write down the poWer series expflnsion for cos x... | | | 5

"(b) Prove the identity : - | 5
C2x) + S2x) = 1,

. for‘ all X € IR, where S(x), C(x) denote the Sine and Co-si.ne' functions respe.cti\‘/elyv.

10. (a) Prove that if R is the radius of convergence of the power series :

n.
E a,x"

then the series is absolutely convergent if '[xl <R. - | ‘ ‘ 4 5
(b) Show that : . o 5
3. 5 7 :
tanlx = x - + X ic——+....._.., -1 <x <1
: 3 5 7 _
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