This question paper contains 4 printed pages]

* .	n 17	3.7	,
Your	$R \cap U$	NO	
1 Vui	MOH	4.0.	

5774

B.Sc. (H) CHEMISTRY/III Sem.

В

Paper—CHHT-305

INORGANIC CHEMISTRY

(Admission of 2010 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Do any five questions.

All questions carry equal marks.

- (a) Compare and contrast the Valence Bond Theory and the Molecular Orbital Theory.
 - (b) With the help of Molecular Orbital Theory which of the following species is paramagnetic in nature and which are dia-magnetic in nature:

 5

$$O_2^{+}$$
, O_2^{-} , O_2^{-} , O_2^{2-} and NO^{+}

(c) Explain on the basis of Molecular Orbital Theory which of the following species will have identical Bond orders: 3

O2-, NO+ and N2

10

	(<i>d</i>)	what are the conditions for hyperdization : Give the	٠
		characteristics of hybrid orbitals.	3
2.	. (a)	Which of the following complexes are stable? Explain	n
•	,	on the basis of HSAB principle:	4
,		[Co(CN) ₅ I] ³⁻ , [Co(N) ₅ F] ³⁻ , [Co(NH ₃) ₅ I] ²⁺ , [Co(NH ₃) ₅ F] ²	2+
,	(b)	On the basis of VSEPR theory predict the shapes of	of
		the following molecules:	6
	•	IF ₇ and [ICl ₄]-, BrF ₃	
	(c)	Which out of the two will have a shorter bond angle	le
		and give reason for your answer:	5
		H ₂ S or H ₂ O	
3.	(a)	Predict the shape of PCI _s and explain why the equatoria	al
	•	and axial bond lengths in PCl ₅ are not equal?	5
	(b)	If X, Y and Z represents elements of atomic number	rs
		9, 17 and 55 respectively, predict the type of bonding	ıg
		you would expect to occur between (a) X and	Y,
		(b) V and 7 (c) V and 7 Predict giving reasons the	he

volatility, electrical conductance and solubility in water

of the compounds thus formed.

4.	(a)	What is a conjugate acid base pair ? Explain with suital	ole
		examples that a strong acid will always have a we	ak
		conjugate base and a weak acid has a strong conjugate	ate
		base.	5
	(b)	Bond energy of a single covalent bond is approximate	ely
		200 kJ Mole ⁻¹ . But the bond energy of H-H single bo	nd
		is 458 kJ Mole ⁻¹ . Explain.	4
	(c)	Explain why CuCl and AgCl are insoluble in H2O a	ınd
-		NaCl is soluble in H ₂ O.	6
5.	Give	reasons for the following:	
	(a)	Draw possible resonating structures of azide union N	I ₃ *.,
		How do they differ from those of hydrozoic acid HN ₃ ?	5.
	(b)	Agl ₂ complex is stable but AgF ₂ is unstable.	3
	(c)	CsF reacts with Lil even though both are ionic in nature.	3
	(d)	BF ₃ combines with F ⁻ and not with H ⁻ .	4
6.	Write	e short notes on :	
	(a)	The Band Model of Metals.	5.
	(b)	London Forces.	2.
	(c)	Hydrogen Bonding.	3
	(d)	Defects it ionic solids.	5

- (a) Drive Born Lande's expression to calculate the Lattice
 Energy of ionic crystal.
 - (b) Draw Born Haber cycle and calculate lattice energy of sodium chloride from the following data: 8

Heat of sublimation of sodium = 10.5 kJ mol⁻¹

Dissociation energy of Cl₂ = 243.0 kJ mol⁻¹

Ionization energy of Na = 495.2 kJ mol⁻¹

Electron affinity of chlorine $= -348.3 \text{ kJ mol}^{-1}$

Enthalpy of formation of NaCl = $-381.8 \text{ kJ mol}^{-1}$