| This | question paper contains 4 printed pages.]                                                                                                                                                                   |          |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 5756 | r n H M-                                                                                                                                                                                                    | •        |
|      | B.Sc. (H) CHEMISTRY / I Sem. B                                                                                                                                                                              |          |
|      | Paper - CHHT - 101                                                                                                                                                                                          |          |
| ٠.   | (Inorganic Chemistry - I)                                                                                                                                                                                   |          |
|      | (Admissions of 2010 and onwards)                                                                                                                                                                            |          |
| Time | · 3 Hours Maximum Marks: 7                                                                                                                                                                                  | 5        |
|      | (Write your Roll No. on the top immediately on receipt of this question paper.)  Attempt six questions in all. Question No. 1 is compulsory and carries 15 marks.  All other questions carry 12 marks each. |          |
| 1.   | Attempt any five questions: $(5\times3=15)$                                                                                                                                                                 | 5)       |
|      | (a) Explain why?                                                                                                                                                                                            | . 1      |
|      | Boron has oxidation state +3 whereas T1 has + though both belong to same group.                                                                                                                             | 3)       |
|      | (b) First Ionization Energy of Al is less than M<br>but reverse is true for second Ionization Energy<br>of Al.                                                                                              | gy       |
|      | (c) How Cartisan coordinates are related to Pol<br>coordinates? Give relevant diagram.                                                                                                                      | aı<br>3) |
|      | (d) Draw the radial probability distribution curves f 4s, 3d and 4d.                                                                                                                                        | o<br>3)  |
|      | (e) List the main drawbacks of Bohr's Theory Atomic Structure. Explain how these we overcome?                                                                                                               |          |

P.T.O.

| (f) | Expla | iin w | √hy | positi | ve io | ns a | re smal | ler | than  | neutral |
|-----|-------|-------|-----|--------|-------|------|---------|-----|-------|---------|
|     | atom  | but   | neg | gative | ions  | are  | larger  | in  | size. | (3)     |

- 2. (a) Electron Capture Enthalpy Values of noble gases are taken as zero, why? (4)
  - (b) What is the physical significance of  $\psi \& \psi^2$ ?
  - (c) Explain why Ist Electron Capture Value for oxygen atom is -ve while IInd Enthalpy Value is +ve?

    (4)
- 3. (a) Calculate 2\* for 3d & 4s electrons in Copper (At No. 29).
  - (b) Calculate ionic radii for Na<sup>+</sup> & F<sup>-</sup>. The internuclear distance in NaF is 231 pm. (4)
  - (c) Draw the radial function plots for 2s, 2p and 3s & 3p orbitals. (4)
- (a) Select from each group of species having smallest size and justify your answer.
  - (i) O, O<sup>-</sup>, O<sup>2-</sup> (ii)  $K^+$ ,  $Sr^{2+}$  & A1 (4)
  - (b) Which of the elements Na, Mg Si & P will have the greatest difference in 1st Ionization Energy & IInd Ionization Energy. (4)
  - (c) If the electron shifts from n = 6 to n = 1 and n = 5 to n = 2, what will be the wave lengths of these two lines (Approximately).

- 5. Attempt any four questions:
  - (a) Electronegative Values for Sn & Cl are 1.8 & 3.0 respectively. Predict the nature of bond between the two. (3)
  - (b) Comment upon the bond angles of the following sets of compounds & explain the trends (Any two)
    - (i) H<sub>2</sub>S, H<sub>2</sub>O, H<sub>2</sub>Se, H<sub>2</sub>Te
    - (ii) NH<sub>3</sub> & NF<sub>3</sub>

(iii) 
$$OF_2 & H_2O$$
 (3)

- (c) What is diagonal relationship and explain it with the help of two examples. (3)
- (d) What is de Broglie equation and how does this equation proves one of Bohr's postulates

$$mvr = \frac{nh}{2\pi}.$$
 (3)

- (e) What are the mathematical expressions for normalized and orthogonal wave functions? (3)
- 6. (a) F is more electronegative than Cl but Cl has higher value of electron Capture Enthalpy? (4)
  - (b) Explain the significance of Heisenbergs Uncertainty Principle for micro & macro particles.

(4)

(c) Apply Hinds rul: of Maximum Multiplicity for Oxygen and Nitrogen atoms' electronic configurations. (4)

P.T.O.

- (a) What are degenerate orbitals and comment upon the degeneracy of 3s, 3p & 3d for Hydrogen atom and Multielectrons systems.
  - (b) Why Half filled & fully filled orbitals are more stable, explain? (2)
  - (c) Write Schrodinger equation for single electron system & explain various terms involved in it.

(3)
(d) Write two exceptions to Aerfbav Principle & explain.

(a) Draw the shapes of 3 dxy and dx<sup>2</sup>-y<sup>2</sup> and give all the values of n, 1 & m for these orbitals.

 (b) What are the conditions imposed on wave function ψ, in order to solve the Schrodinger's equation.

- (c) Discuss main features of S-Block & p-Block elements in the periodic Table with respect to ionization energy and electron affinity. (3)
- (d) Calculate the bond length of HF molecule from the following data:

 $\gamma_{\rm H} = 0.37 \text{ Å} ; \quad \gamma_{\rm F} = 0.72 \text{ Å}$   $X_{\rm H} = 2.1 ; \quad X_{\rm F} = 4.0$ 

Take into the account the difference in the electronegativity of wo atoms in HF molecule.

(3)

This question paper contains 4+2 printed pages]

Your Roll No. ....

5757

## B.Sc. (Hons.) CHEMISTRY/I Sem.

В

## Paper—CHHT-102: Organic Chemistry—I

(Admission of 2010 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer six questions in all. Question

number 1 is compulsory.

 (a) Arrange the following in the increasing order of the basic strength. Give reasons for your answer.





(



- (b) Write the structural formula of (S), (E)-2-Bromo-3-heptene.
- (c) Identify A, B and C in the following sequence and write their structures with E|Z or R|S configurations.

$$CH_{3}C \equiv CH \xrightarrow{(i) \text{ NaNH}_{2}} A \xrightarrow{H_{2}/\text{Pd}(\text{CaCO}_{3})} B$$

$$\downarrow \text{dil. KMnO}_{4}$$

$$C$$

$$3, 4, 8$$

- (a) Arrange the following in the increasing order of stability.
   Give reasons for your answer:
  - (*i*) (CH<sub>3</sub>)<sub>3</sub>C<sup>⊕</sup>
  - (ii) (CH<sub>3</sub>)<sub>2</sub>CH

(

- (iii) CH<sub>3</sub>ČH<sub>2</sub>
- (iv)  $\overset{\oplus}{\text{CH}}_3$
- (b) Draw the Newman Projection formulae for the chair and boat conformations of cyclohexane and explain giving reasons, which conformation is most stable.
- (c) The C—O bond lengths in formic acid are 1.23Å and 1.36 Å but both bonds in sodium formate are 1.27 Å. Explain.
- 3. How will you prepare the following? Attempt any three:
  - (a) m-Bromobenzoic acid from benzene
  - (b) 2, 3-Dimethyl butane from propane
  - (c) 1-Bromo-2-methyl propane from 2-bromo-2-methyl propane.
  - (d) Butanone-2 from ethyne.

 $4 \times 3 = 12$ 

4. (a) Write the Fischer's projections for all the possible stereoisomers of 2, 3 dibromobutane. Indicate which of

these are optically active and how they are related to each other. Write R|S configuration of any *one* of them.

- (b) Although p-hydroxybenzoic acid is less acidic than benzoic acid, salicylic acid (o-hydroxybenzoic acid) is 15 times more acidic than benzoic acid.
   7, 5
- 5. Write down the product(s) obtained. Attempt any three :
  - (a) When propene is treated with bromine in the presence of sodium iodide. Explain with mechanism.
  - (b) Although chlorine deactivates the benzene ring. Yet it is ortho and para directing. Explain.
  - (c) What happens when 2-methylpropene is treated with 2-methylpropane in acidic medium? Explain the reaction.
  - (d) Explain with mechanism the product(s) obtained when butene-1 is treated with HBr in presence of peroxides.

    4×3=12

- 6. Explain any three of the following:
  - (a) Aromatic character is observed in 1, 3 cyclopentadienyl anion but not in 1, 3 cyclopentadiene.
  - (b) Mixture of 3-bromo-2,2-dimethyl butane and 2-bromo-2,3 dimethylbutane is obtained when HBr adds to 3,3 dimethyl-1- butene.
  - (c) Meso-2, 3 dibromobutane is obtained when bromine adds to trans-2-butene.
  - (d) Chlorine is more reactive while bromine is more selective in halogenation of alkanes.

    4×3=12
- 7. Write short notes on any two of the following:
  - (a) Friedel Craft s Reaction
  - (b) Wurtz-Fittig reaction
  - (c) Resolution of racenic mixtures by the diastereomeric salt formation.

    6×2=12

8. Complete the following reactions and identify A, B and C:

(a) 
$$CH_3CH_2CH = CH_2 \xrightarrow{B_2H_6} A \xrightarrow{H_2O_2} B$$

(b) 
$$CH_3C \equiv CH \xrightarrow{\text{dil. } H_2SO_4} A$$

(c) 
$$CH_3CH_2CH_2CH = CH_2 + CHBr_3 + peroxide \longrightarrow A$$

(d) 
$$CH_3CH = CH_2 \xrightarrow{Cl_2, 500^{\circ}C} A$$

(e) 
$$CH_3CH = CHCH_2CH = CH_2$$

$$(i) O_3; (ii) Zn, H_2O$$
 A + B + C

12=11/2 (marks for each)