This question paper contains 5 printed pages.]

Your Roll No.

568-A

Α

B.Sc.(Prog.) / II CH-201: CHEMISTRY (Admissions of 2007 and before)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Use separate answer-sheets for Sections A and B.

SECTION A

Inorganic Chemistry

Attempt any four questions.

1. (a) Why are sulphide ones roasted to oxides before reduction?

 $4\frac{1}{2}$

(b) Write short notes on

(i) Mond's Process

4

(ii) Parting Process

4

2. (a) What is the Pauling's scale of electronegativity? Why is it the most preferred scale in use? $4\frac{1}{2}$

[P.T.O.

,00	1 2		(2)	
	(b)	Expl	ain any four of the following:	4×2
		(i)	Calcium hydroxide is the strongest alkali.	
		(ii)	Lithium forms a nitride whereas other alkali metals	do not.
		(iii)	Beryllium chloride is polymeric	
		(iv)	Lithium is as food a reducing agent as cesium in a solution	queous
		(v)	Magnesium salts have higher water of crystalliza	tion.
3.	(a)	Which elements form interstitial Hydrides? What are		
		impo	ortant properties of interstitial hydrides?	$4\frac{1}{2}$
	(b)	b) Compare the acidic and basic strengths of the hydr		
		Nitro	ogen and Halogen group.	2
	(c)	to li	lain what happens when an alkali metal in graduall iquid ammonia. Comment on the colour, dens ductance of the different coloured solutions.	
4.	(a)		te the names, formulas and draw the structures of o	xoacids 10
	(b)	Writ	te the oxidizing properties of per acids of sulphur.	At least
	ı	two	properties).	$2\frac{1}{2}$
5.	(a)	Wha	at are the differences between inorganic and	organic
		poly	mers?	4

	(b)	How are the linear and crosslinked silicones prepared?			
	(c)	Give two important uses of silicones.	$2\frac{1}{2}$		
6.	(a)	How does the Na/K pump works to decrease the concent	ration		
		of sodium in the body?	4		
	(b)	Describe the structures of N_2H_4 and N_3H .	2		
	(c)	What are the sources of contamination of mercury? Wh	nat are		
		the antidotes? What are its biochemical effects?	$6\frac{1}{2}$		
		SECTION B			
		Physical Chemistry			
		Attempt any two questions.			
1.	(a)	Derive the expression:			
	η =	$= \frac{1}{3} m N \overline{u} \lambda, \text{ where all the symbols have their usual mean}$	nings.		
		Discuss the effect of temperature on η .	$4\frac{1}{2}$		
	(b)	Discuss the effect of temperature and pressure on mea	n free		
		path (λ) , Collision number (Z_1) and collision frequency	(Z ₁₁).4		

(c) At 300 K, calculate the following for oxygen in a bulb at a

nm.

pressure of 10^{-5} torr. The molecular diameter of oxygen is 0.36

(3)

4

568-A

- (a) Z_1 , number of collision per sec.
- (b) Z₁₁, number of collision per second per m³.
- 2. (a) What is the effect of temperature on the viscosity of a liquid.? $2\frac{1}{2}$
 - (b) Explain why small drops of liquids are spherical. 2
 - (c) The time of flow of water through an Ostwald viscometer is 1.52 minutes, for the same volume of an organic liquid of density 0.8 g/ml, it is 2.25 minutes. Find the viscosity of liquid related to water and also absolute viscosity at 20°C. Density and viscosity of water are 1.0 g/ml and 1.002 × 10⁻² poise, respectively.
 - (d) Explain:
 - (i) Degree of freedom of motion
 - (ii) Law of corresponding states.
- (a) Derive expressions for P_c, V_c and T_c in terms of a, b₂ and R for a
 Van der Waals gas.
 - (b) Derive the relation $\Delta Smix = -nR \sum_{i} x_i \ln x_i$ 4

4. (a) Derive therm odynamically

$$\pi = \frac{n_2}{v} RT$$
, where all symbols have their usual meanings.

 $4\frac{1}{2}$

- (b) 1.250 g of naphthalene was dissolved in 60 cm³ of benzene and the freezing point of the solution was found to be 277.515 k, while that of pure benzene is 278.49k. Density of benzene is 0.880 g/cm³, K_f=5.1 K/per 1000 g of benzene. Calculate molar mass of naphthalene.
- (c) Write the Maxwell Boltzmann distribution law of molecular speeds and derive the expression of most probable speed. 4