[This question paper contains 6 printed pages.]

1248

Your Roll No.

B.Sc. (Hons.)/I

A

CHEMISTRY - Paper IV

(Mathematics - I)

Time: 3 Hours

Maximum Marks: 55

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Six questions in all, selecting at least one question from each Section.

SECTION A7

1. (a) If
$$y = \left[x + \sqrt{1 + x^2}\right]^m$$
, prove that
$$(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$$
 (3)

(b) If
$$u = \sin^{-1} \frac{x^2 + y^2}{x + y}$$
, show that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$$
 (3)

(c) Obtain Maclaurin's series expansion of sin x.

(4)

P.T.O.

2. (a) Evaluate:

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} \tag{3}$$

- (b) Find the equation of the tangent to the parabola $y^2 = 4x + 5$ parallel to the line 2x y = 3. (3)
- (c) Discuss the validity of Rolle's theorem for $f(x) = (x-a)^m(x-b)^n$ in [a, b]; m, n being positive integers. (3)
- (a) Show that the radius of curvature at any point of the curve x = a cos³θ, y = a sin³θ is equal to three times the length of the perpendicular from the origin to the tangent.
 (3)
 - (b) Find the asymptotes of the curve:

$$x^3 + x^2y - xy^2 - y^3 - 2x^2 + 2y^2 + x + y + 1 = 0.$$
 (3)

(c) Trace the curve:

$$y^{2}(a+x) = x^{2}(3a-x)$$
 (3)

SECTION B

4. (a) Evaluate the following:

(i)
$$\int_{0}^{\pi/2} \frac{\sin^2 x}{1 + \sin x \cos x} dx$$

(ii)
$$\int_{0}^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$$
 (5)

(b) If
$$U_n = \int_0^{\pi/2} \theta \sin^n \theta \ d\theta \ (n > 1)$$
, prove that
$$U_n = \frac{n-1}{n} U_{n-2} + \frac{1}{n^2} . \text{ Deduce that } U_5 = \frac{149}{225}.$$
(4)

5. (a) Find the area of the loop of the curve

$$x(x^2 + y^2) = a(x^2 - y^2).$$
 (4)

(b) Show that the length of the loop of the curve

$$3ay^2 = x(x-a)^2 \text{ is } \frac{4a}{\sqrt{3}}.$$
 (5)

6. (a) Solve any two of the following differential equations:

(i)
$$(x + 2y^3) \frac{dy}{dx} = y$$

(ii)
$$[y(1+x^{-1}) + \sin y]dx + [x + \log x + x \cos y]dy = 0$$

(iii)
$$\left(x^2 + y^2\right) \frac{dy}{dx} = xy$$
 (4)

(b) Solve any two of the following differential equations:

(i)
$$y = 2x \frac{dy}{dx} + y^2 \left(\frac{dy}{dx}\right)^3$$

(ii)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = (e^x + 1)^2$$

(iii)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = \sin 2x$$
 (5)

SECTION C

- 7. (a) Find the value of λ so that the equation $2x^2 + xy y^2 11x 5y + \lambda = 0 \text{ may represent a}$ pair of straight lines. (3)
 - (b) Show that the equation of the circle drawn on the chord $x\cos\alpha + y\sin\alpha p = 0$ of the circle $x^2 + y^2 = a^2$ as diameter is $x^2 + y^2 a^2 2p$ $(x\cos\alpha + y\sin\alpha p) = 0$. (3)
 - (c) Prove that the locus of the middle points of focal chords of the parabola $y^2 = 4ax$ is $y^2 = 2a(x-a)$.

 (3)
- 8. (a) Show that the locus of the poles of normal chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{a^6}{x^2} + \frac{b^6}{y^2} = (a^2 b^2)^2$. (4)
 - (b) Prove that the line 1x + my = n will touch the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ if $a^2l^2 b^2m^2 = n^2$. (5)

(a) Show that 12x²-2y²-6z²-2xy+7yz+6zx = 0 represents a pair of planes. Find the angle between the planes.

5

(b) Find the magnitude and the equations of the line of shortest distance between the lines:

$$\frac{x-3}{2} = \frac{y+15}{-7} = \frac{z-9}{5}; \ \frac{x+1}{2} = \frac{y-1}{1} = \frac{z-9}{-3}$$
 (3)

(c) Find the centre and the radius of the circle:

$$x + 2y + 2z = 15$$
, $x^2 + y^2 + z^2 - 2y - 4z = 11$. (3)

SECTION D

10. (a) Prove that:

$$32\cos^6\theta = \cos6\theta + 6\cos4\theta + 15\cos2\theta + 10$$
 (3)

(b) Solve:
$$z^6 - z^5 + z^4 - z^3 + z^2 - z + 1 = 0$$
. (3)

(c) Find the modulus and argument of

$$\left(\frac{1+\cos\theta+\mathrm{i}\sin\theta}{1+\cos\theta-\mathrm{i}\sin\theta}\right)^{\mathrm{n}},$$

n. is a positive integer and $\theta \neq (2K+1)\pi$. (3)

11. (a) Solve the equation: $3x^3 + 14x^2 - 28x - 24 = 0$, the roots being in G.P. (3)

P.T.O.

(b) Form the cubic whose roots are the values of α , β , γ given by the relations:

$$\alpha + \beta + \gamma = 3$$
, $\alpha^2 + \beta^2 + \gamma^2 = 5$, $\alpha^3 + \beta^3 + \gamma^3 = 11$.

(c) If α , β , γ be the roots of $x^3 + qx + r = 0$, form an equation whose roots are $(\beta - \gamma)^2$, $(\gamma - \alpha)^2$, $(\alpha - \beta)^2$.