This question paper contains 4+2 printed pages]

	Roll N	0.		ŀ				
S. No. of Question Paper	6066							
Unique Paper Code	: 234103				D			
Name of the Paper	: Discrete Structures (CSHT	102)						
Name of the Course	: B.Sc. (H) Computer Science	e						
Semester	• • I							

Duration : 3 Hours

Maximum Marks : 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 (Section A) is compulsory.

Attempt any four questions from Section B.

Parts of a question should be attempted together.

Section A

(a) In a class of 25 students, 12 have taken economics, 8 have taken economics but not political science. Find the number of students who have taken economics and political science and those who have taken politics but not economics.

(b)
$$f(x) = x^2$$
 and $g(x) = 2^x$

Find $f \circ f(x)$, $g \circ g(x)$, $f \circ g(x)$, $g \circ f(x)$.

P.T.O.

(c) Use the master method to find the running time for the given recurrence relation :

$$T(n) = 125 T(n/5) + n^3$$
.

- (d) How many numbers of different messages that can be represented by sequences of three dashes and two dots ?
- (e) Suppose that a connected planar simple graph has 20 vertices, each of degree 3. Into how many regions does a representation of this planar graph split the plane ? 3
- (f) If G is a connected planar simple graph with e edges and v vertices, where $v \ge 3$, then $e \le 3v - 6$.
- (g) Let a be a numeric function such that :

$$a_r = \begin{cases} 2 & 0 \le r \le 3 \\ 2^{-r} + 5 & r \ge 4 \end{cases}$$

Determine Δa and ∇a .

(h) Find the particular solution for the given difference equation :

$$a_r + a_{r-1} = 3r 2^r$$
.

(*i*) Show that :

$$\neg (p \lor (\neg p \land q))$$
 and $\neg p \land \neg q$

are logically equivalent by (without using truth table method).

4

Section B

2. (a) Give an example of a relation that is reflexive but neither symmetric nor transitive. 3

(b) Show that :

$$1.2.3 + 2.3.4 + 3.4.5 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}.$$

(c) Let

A = $\{1, 2, 3, 4\}$ and B = $\{a, b, c, d\}$.

Let $f : A \rightarrow B$ such that :

 $f: 1 \rightarrow a, 2 \rightarrow a, 3 \rightarrow a, 4 \rightarrow a.$

Verify whether f is an onto or one to one function.

3. (a) In how many ways can a cricket team of eleven be chosen out of a batch of
 14 players ? How many of them will :

(i) include a particular player ?

(*ii*) exclude a particular player ?

(b) Show that :

 $3x^2 + 8x \log x$ is $\Theta(x^2)$.

4

- 4. (a) List all the steps used to search for 9 in the sequence 1, 3, 4, 5, 6, 8, 9, 11 using :
 - (*i*) a linear search
 - (*ii*) a binary search.
 - (b) Give big-O estimates for the factorial function and the logarithm of the factorial function.
- 5. (a) Determine the discrete numeric function for the given generating function :

$$A(z) = 7z^2 / (1 - 2z) (1 + 3z).$$

(b) Solve the recurrence relation :

$$a_r - 7a_{r-1} + 10a_{r-2} = {}_3r,$$

given that $a_0 = 0$ and $a_1 = 1$.

6. (a) Let p denote the statement, "The material is interesting" and q denotes the statement,
"The exercises are challenging" and r denotes the statement, "The course is enjoyable".
Write the following statements in symbolic form :

(*i*) The material is interesting and the exercises are challenging.

6066

4

- (*ii*) If the material is not interesting and the exercises are not challenging then the course is not enjoyable.
- (*iii*) Either the material is interesting or the exercises are not challenging, but not both.
- (b) Given the value of $p \rightarrow q$ is true, determine the value of :

 $\overline{p} \lor (p \leftrightarrow q).$

(c) Show that \overline{p} is tautologically implied by :

 $\overline{(p \wedge \overline{q})}, \overline{q} \vee r, \overline{r}.$

7. (a) Find the adjacency matrix for the given directed multigraph.

3 ·

(b) Determine whether the given graph is planar, if so, draw it so that no edges cross.

(c) How many vertices does a full 5-ary tree with the 100 internal vertices have ? 3