[This question paper contains 4 printed pages.]

Your Roll No.

B.Sc. (Hons.) / I

 \mathbf{C}

CHEMISTRY - Paper V

(Physics - I)

Time: 3 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 is compulsory.

Attempt two question from

Section A and Section B each.

1. Attempt any five:

905

 (2×5)

- (i) Define polar and axial vectors giving examples for each.
- (ii) State Stokes's theorem with all symbols clearly defined.
- (iii) Find a unit vector normal to the surface $x^2 + 4y^2 + 3z^2 = 5$ at the point (2,1,0).
- (iv) Find $\overrightarrow{\nabla} \times \overrightarrow{F}$ where $\overrightarrow{F} = \overrightarrow{\nabla} (x^2 + y^2 + z^2 3xyz)$.

- (v) Show that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative force.
- (vi) Distinguish between interference and diffraction of Light.
- (vii) State perpendicular axis theorem of moment of inertia.
- (viii) What are central forces?

SECTION - A

- 2. (i) State and prove Work-Energy Theorem. (3)
 - (ii) Derive an expression for moment of inertia of a thin spherical shell of radius R and mass M about its diameter.
- 3. (i) Prove that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$. (3.5)
 - (ii) Find $\vec{\nabla} \left(\log_e \left(\vec{r} \right) \right)$. (3.5)
- 4. (i) Establish the equation of forced harmonic oscillator and obtain the steady state solution in case of weak damping approximation. (5)

3

- (ii) What do you understand by Q-factor of an Oscillator? (2)
- (i) What are elastic collisions? Derive the expression for the final velocities of two bodies of mass m₁ and m₂ after head-on collision.

[Given that u_1 and u_2 are the initial velocities of m_1 and m_2 respectively]. (3,1)

(ii) A particle is subjected to two perpendicular SHMs given by

 $x = 2 \sin \omega t$ and $y = 4 \sin (\omega t + \varphi)$.

Find the equation of the resultant path of the particle if

(a)
$$\varphi = 0$$
 and (b) $\varphi = \frac{\pi}{2}$ (3)

SECTION - B

- 6. (i) Distinguish between Fresnel and Fraunhofer Diffraction. (2)
 - (ii) Derive an expression for intensity in case of Fraunhofer diffraction due to a double slit.

(5)

7. (i) What are Newton's rings? How are they formed? (1,2)

P.T.O.

- (ii) Derive an expression for the radius of the m th dark ring formed by reflection. (4)
- 8. (i) State Brewster's law of polarization. (2)
 - (ii) Distinguish between Circularly and Elliptically polarised light.(3)
 - (iii) Find the thickness of a quarter wave plate for light of wavelength 5.9×10^{-7} m. Principal refractive indices are $\mu_0 = 1.544$ and $\mu_e = 1.553$.
- 9. Write short notes on any two of the following:
 - (i) Zone plate
 - (ii) Fresnel's biprism
 - (iii) Resolving power of a microscope and telescope
 - (iv) Interference due to wedge shaped films
 (3.5+3.5)