[This question paper contains 4 printed pages.]

904

Your Roll No.

B.Sc. (Hons.) / I

 \mathbf{C}

CHEMISTRY - Paper IV

(Mathematics - I)

Time: 3 hours Maximum Marks: 55

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions in all, selecting at least one question from each Section.

SECTION A

1. (a) If $y = \sin(m \sin^{-1} x)$, show that $(1 - x^2)y_{n+2} = (2n + 1)xy_{n+1} + (n^2 - m^2)y_n$ (3)

(b) Obtain Maclaurin series expansion of log(1+x).(3)

(c) If $u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ show that

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{z}^2} = 0$$
 (3)

2. (a) Verify Lagrange's mean value theorem for the function

$$f(x) = (x-1)(x-2)(x-3) \text{ in } [1,4].$$
 (3)

P.T.O.

- (b) Show that the function $3x^3 9x^2 + 9x + 7$ is strictly increasing in every interval. (3)
- (c) Evaluate $\lim_{x\to 0} \left(\frac{\sin x}{x} \right)^{1/x^2}$. (3)
- 3. (a) Show that the tangent and the normal at any point of the curve $x = a e^{\theta} (\sin \theta \cos \theta)$ and $y = a e^{\theta} (\sin \theta + \cos \theta)$ are equidistant from the origin. (3)
 - (b) Find the asymptotes of the curve $x^3 + x^2y - xy^2 - y^3 + 2xy + 2y^2 + 3x + y = 0.$ (3)
 - (c) Trace the curve: $x(x^2 + y^2) = a(x^2 y^2)$. (3)

SECTION B

- 4. (a) Find the area between the curve $y^2(2a x) = x^3$. (5)
 - (b) Show that the length of the loop of the curve

$$3ay^2 = x(x-a)^2$$
 is $\frac{4a}{\sqrt{3}}$. (4)

- 5. Evaluate any two the following integrals:
 - (a) $\int_0^{\pi} \frac{\cos x}{1 + \sin^2 x} dx$
 - (b) $\int \frac{x dx}{(x+2)\sqrt{x+1}}$

(c)
$$\int \sqrt{\frac{x+2}{2x+3}} \frac{1}{x} dx$$
 (9)

- 6. Solve any two of the following differential equations:
 - (a) $(x + 2y^3) dy = y dx$

(b)
$$(y + 2x) dy = (x - 2y) dx$$

(c)
$$(D^2 + 4) y = e^{-2x} + \sin 3x$$

(d)
$$(x^2D^2 - 2xD + 2)y = x^3$$
 (9)

SECTION C

- 7. (a) Find the value of λ so that the equation $2x^2 \pm xy y^2 11x 5y \pm \lambda = 0$ may represent a pair of the straight lines. (5)
 - (b) Find the equation of the circle whose diameter is the common chord of the circles

$$x^{2} + y^{2} + 2x + 3y + 1 = 0$$
. $x^{2} + y^{2} + 4x + 3y + 2 = 0$. (4)

- 8. (a) Prove that the locus of the mid points of all chords of the parabola $y^2 = 4ax$ drawn through the vertex is the parabola $y^2 = 2ax$. (4)
 - (b) Show that the polar of any point on the ellipse w. r. t the hyperbola touches the given ellipse. (5)

4

9. (a) Find the equation of the plane through the intersection of the planes

$$x + 2y + 3z + 4 = 0$$
 and $4x + 3y + 2z + 7 = 0$
and passes through point P(1.1,1). (4)

(b) Find the equation of the sphere which touches the sphere

 $x^2 + y^2 + z^2 - x + 3y + 2z - 3 = 0$ at the point (1.1.-1) and passes through origin. (5)

SECTION D

- 10. (a) Solve: $x^4 x^3 + x^2 x + 1 = 0$. (3)
 - (b) Prove that $16 \sin^5\theta = \sin 5\theta 5 \sin 3\theta + 10 \sin\theta$. (3)
 - (c) Prove that $(\sqrt{3} + i)^n + (\sqrt{3} i)^n = 2^{n+1} \cos \frac{n\pi}{6}$. (3)
- 11. (a) Solve $x^3 3x^2 + 4 = 0$ given that two of its roots being equal. (3)
 - (b) If α , β , γ are the roots of the equation $x^3 px^2 + qx r = 0$. Find the value of $\Box \alpha^2 \beta$ (3)
 - (c) If α , β , γ are the roots of the equation $x^3 3x^2 + 6x 2 = 0$, form the equation whose roots are $\beta^2 + \gamma^2$, $\alpha^2 + \gamma^2$, $\alpha^2 + \beta^2$. (3)

(300)