This question paper contains 4+2 printed pages]

Your Roll No.

1984

B.Sc. (Hons.)/(Computer Science)/V Sem. C

Paper 504: NUMERICAL ANALYSIS AND

SCIENTIFIC COMPUTING

(Admissions of 2001 and onwards)

Time: 3 Hours Maximum Marks: 75

· (Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all questions in order.

Parts of a question must be answered together.

Use of non-programmable scientific calculator is allowed.

1. (a) Define order of convergence for a sequence. Prove that the sequence of iterates (X_n) to find reciprocal of a positive real number N developed by using Newton's method converges to the actual value $\frac{1}{N}$ if and only if initial approximation X_0 satisfies the inequality $0 < x_0 < \frac{2}{N}$. 5

- (b) Write an algorithm for bisection method to find an approximate root of an equation f(x) = 0. Apply it to find a smallest positive root of $x \tan(x) = 0$ correct upto 3 places of decimal.
- 2. (a) Prove that there exists a unique polynomial of degree at most n that interpolates y_i at x_i , $i = 0, 1, \dots, n$, where x_0, x_1, \dots, x_n are all distinct.
 - (b) Use forward difference interpolation formula to find f(2.15) for the following data:

x_i	$f(x_i)$
2.0	1.414214
2.1	1.449138
2.2	1.483240
2.3	1.516575
2.4	1.549193

(3) 1984

(c) Derive interpolation error formula in the form:

$$f(t) - p_n(t) = (t - x_0) (t - x_1) \dots (t - x_n)$$

$$f[x_0,, x_n, t]$$

where $p_n(t)$ denotes interpolating polynomial of degree at most n that interpolates $f(x_0)$, $f(x_1)$, $f(x_n)$ at distinct points x_0 , x_1 ,, x_n .

3. (a) Let f be a function having continuous derivatives upto order 2. Derive composite trapezoidal integration error formula for f on [a, b] in the form :

$$E_n(f) = \frac{-(b-a)h^2}{12} f''(n)$$

where $n \ge 1$ and $h = \frac{b-a}{n}$.

(b) Derive Gaussian quadrature formula for $\int_{-1}^{1} f(x) dx$ with two node points and use it to find approximate value of:

$$\int_0^\pi e^x \cos(x) \, dx \,.$$

- 4. (a) Derive an error formula for f''(x) by using the method of undetermined coefficients.
 - (b) Use modified Euler's method to find solution to :

$$\frac{dy}{dx} = y^2 + x^2$$
, $y(1) = 0$,

at
$$x = 2$$
 and using $h = 0.2$.

(c) Use fourth order Runge-Kutta method with h = 0.2 to find y(1) for the following differential equation:

$$\frac{dy}{dx} = \frac{1}{(x+y)}, \ y(0) = 2$$

5. (a) Use Gauss elimination method to solve the following system of equations:

$$4x - 2y + z = 15$$

$$-3x - y + 4z = 8$$

$$x - v + 3z = 13.$$

(b) Evaluate 1-norm, 2-norm and Frobenius norm of the matrix:

$$\begin{bmatrix} 5 & -9 & 6 \\ 2 & -7 & 4 \\ 1 & 5 & 8 \end{bmatrix}.$$

6. (a) Use Gauss-Seidel method to solve: 5

$$x - 2y + z = 0$$

$$3x - y + 4z = 6$$

$$x + y + 3z = 5.$$

(b) Use Rayleigh-Ritz method to solve $y^n + y = 3x^2$ with boundary points (0, 0) and (2, 3, 5).

(c) Consider a least square linear approximation to the function $y = e^{x}$ on [0, 1].