[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	$: 5005 \quad$ Dour Roll No.................			
Unique Paper Code	$: 235166$		Name of the Course	B.Sc. (Hons.) Computer Science, B.Sc. (Mathematical Science), B.Sc. (Physical Sciences)
:---	:---			
Name of the Paper	$:$ Calculus and Matrices (MAPT 101)			
Semester	I			
Time : 3 Hours				

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Attempt any two questions from each section.

SECTION I

1. (a) Is the following set of vectors a basis for R^{2}

$$
\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

(b) Solve the system of equations:

$$
\begin{aligned}
& x+y+z=7 \\
& x+2 y+3 z=16 \\
& x+3 y+4 z=22
\end{aligned}
$$

(c) Examine whether the set $V=\left\{\left(a, b^{2}\right): a, b \in R\right]$ is a subspace of R^{2}. If yes, give its geometrical interpretation.
2. (a) Is the transformation $T: R^{3} \rightarrow R^{3} ; T(x, y, z)=(x+y, x+z, x)$ linear. Justify.
(b) Find the characteristic equation, eigenvalues and eigen vector corresponding to any one eigen value for the matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 3 & 5 \\
1 & 5 & 12
\end{array}\right]
$$

(c) Find the inverse of the matrix $\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$ using elementary operations.
3. (a) Find the image of the unit square with vertices $(0,0),(0,1)(1,1),(1,0)$ under a translation by vector $(1,1)$.
(b) Find the rank of the matrix $\left[\begin{array}{rrrr}1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 3 & 0 & 1\end{array}\right]$.
(c) Find the values of c for which the set of vectors $\{(2,-c),(2 c+6,4 c)\}$ in R^{2} are linearly dependent.
$(4,4,4)$

SECTION II

4. (a) Sketch the graph of $y=|x-3|+7$. Mention the transformation used at each step.
(b) A bacteria culture is known to grow at a rate proportional to the number present. After one hour, 1000 bacteria are observed in the culture and after 4 hours, it is 3000 . Determine the number of bacteria originally present in the culture.
(c) Draw the level curve of $f(x, y)=9 x^{2}+25 y^{2}$ of height $k=1,2$.
5. (a) If $y=e^{m \sin ^{-1}(x)}$, show that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+m^{2}\right) y_{n}=0
$$

(b) Show that $z=e^{-y} \cos (x)$ is a solution of Laplace's equation.
(c) Find Taylor series generated by $f(x)=\cos (2 x)$ about $x=0$ (assuming the possibility of its expansion). $(6,6,6)$
6. (a) Discuss the convergence of the sequences:
(i) $\left\langle\frac{2 n-1}{3 n}\right\rangle$
(ii) $\left\langle\frac{\cos ^{2}(n)}{n^{2}}\right\rangle$
(b) If $z=3 x y-y^{3}+\left(y^{2}-2 x\right)^{3 / 2}$. Show that

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}
$$

(c) Find $\frac{d^{n} y}{d x^{n}}$ where $y=\cos ^{3} x$.

SECTION III

7. (a) Simplify $\left(\frac{1+\cos \theta+i \sin \theta}{1+\cos \theta-i \sin \theta}\right)^{n}$.
(b) Find the equation of the circle described on the join of the points $1+i$ and $2-i$ as extremities of one of its diameters.
8. (a) Use De Moivre's Theorem to solve the following equation:

$$
z^{7}+z=0
$$

(b) Find the equation of the straight line joining the points whose affixes are $1-\mathrm{i}$ and $2-5 \mathrm{i}$.
$(4,3.5)$
9. (a) Form an equation of lowest degree with real coefficients that has $2+3 \mathrm{i}$ and $3-2 \mathrm{i}$ as two of its roots.
(b) Find all the values of $(\sqrt{3}-i)^{2 / 5}$.

