Aim: To find the root of an equation using Bisection Method.

Algorithm:

- 1. Enter the initial guesses: a and b.
- 2. Enter the accuracy, eps.
- 3. If f(a)*f(b)<0,

then continue,

else

ask the user to enter different values of a and b.

4. While (|a-b|<eps)

Calculate c= (a+b)/2. If f(a)*f(c)>0 b=c Else a=c

End While.

- 5. Print 'c' which is the required root between a & b.
- 6. End.

Flow Chart:

Program:

```
//bisection method
#include<iostream>
#include<cmath>
#include<iomanip>
using namespace std;
double f(double x); //declare the function for the given equation
double f(double x) //define the function here, ie give the equation
{
  double a=x*x-4.0; //write the equation whose root is to be determined
  return a;
}
int main()
{
  cout.precision(5);
                        //set the precision
  cout.setf(ios::fixed);
  double a,b,c,e,fa,fb,fc; //declare some needed variables
  a:cout<<"Enter the initial guesses:\na="; //Enter the value of a(set a label('a:') for later use with
goto)
  cin>>a;
                       //Enter the value of b
  cout<<"\nb=";
  cin>>b;
  cout<<"\nEnter the degree of accuracy desired"<<endl; //Enter the accuracy
                   //e stands for accuracy
  cin>>e;
```

```
int iter=0;
                                              //Check if a root exists between a and b
     if (f(a)*f(b)>0)
                             //If f(a)*f(b)>0 then the root does not exist between a and b
     {
           cout<<"Please enter a different intial guess"<<endl;
           goto a;
                                           //go back to 'a' ie 17 and ask for different values of a and b
      }
      else
                                     //else a root exists between a and b
      {
     cout<<"Iter"<<setw(14)<<"a"<<setw(18)<<"b"<<setw(18)<<"c"<<setw(18)<<"f(c)"<<setw(18)<<"langerty f(c)"<<setw(18)<<"langerty f(c)"<<setw(18)<<"langerty f(c)"</setw(18)<<setw(18)<<setw(18)<<setw(18)<<setw(18)<<setw(18)<<setw(18)<<setw(18)<<setw(18)<setw(18)<<setw(18)<<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(18)<setw(1
b|"<<endl;
      cout<<"-----\n":
      while (fabs(a-b)>=e)
                                                             /*if the mod of a-b is greater than the accuracy desired
                                              bisecting the interval*/
keep
     {
           c=(a+b)/2.0;
                                                //bisect the interval and find the value of c
           fa=f(a);
           fb=f(b);
           fc=f(c);
           iter++;
           cout<<iter<<setw(18)<<a<<setw(18)<<b<<setw(18)<<fc<<setw(18)<<fc<<setw(18)<<fc>
b)<<endl;/*print the
                                                                                   values of a,b,c and fc after each iteration*/
           if (fc==0)
                                         //if f(c)=0, that means we have found the root of the equation
           {
                 cout<<"The root of the equation is "<<c<endl;; /*print the root of the
equation
                                                                             and end program*/
                 return 0;
           }
           if (fa*fc>0) //if f(a)xf(c)>0, that means no root exist between a and c
           {
                 a=c; /*hence make a=c, ie make c the starting point of the interval and b
the
                                    end point*/
           else if (fa*fc<0)
           {
                 b=c; /*this means that a root exist between a and c therfore make c the
                                      point of the interval*/
end
           }
     }
                        //The loop ends when the difference between a and b becomes less than the desired
     }
accuracy ie now the value stored in 'c' can be called the approximate root of the equation
      cout<<"The root of the equation is "<<c<endl;; //print the root
      return 0;
}
```

Output:

For f(x)=x^2-4:

Enter t a=1	he initial guesse	s:							
b=2.5									
Enter the degree of accuracy desired .01									
Iter	а	Ь	c	f(c)	a-b				
1	1.00000	2.50000	1.75000	-0.93750	1.50000				
2	1.75000	2.50000	2.12500	0.51562	0.75000				
3	1.75000	2.12500	1.93750	-0.24609	0.37500				
4	1.93750	2.12500	2.03125	0.12598	0.18750				
5	1.93750	2.03125	1.98438	-0.06226	0.09375				
б	1.98438	2.03125	2.00781	0.03131	0.04688				
7	1.98438	2.00781	1.99609	-0.01561	0.02344				
8	1.99609	2.00781	2.00195	0.00782	0.01172				
The roo	t of the equation	is 2.00195							

```
Enter the initial guesses:
a=3
b=4
Enter the degree of accuracy desired
.00001
Please enter a different intial guess
Enter the initial guesses:
a=
```

For f(x)= 3x+sinx-e^x

Enter a=0	er the initial guesses:							
b=1								
Enter .0001	the degree of accura	cy desired						
Iter	а	b	с	f(c)	a-b			
1	0.00000	1.00000	0.50000	0.33070	1.00000			
2	0.00000	0.50000	0.25000	-0.28662	0.50000			
3	0.25000	0.50000	0.37500	0.03628	0.25000			
4	0.25000	0.37500	0.31250	-0.12190	0.12500			
5	0.31250	0.37500	0.34375	-0.04196	0.06250			
6	0.34375	0.37500	0.35938	-0.00262	0.03125			
7	0.35938	0.37500	0.36719	0.01689	0.01562			
8	0.35938	0.36719	0.36328	0.00715	0.00781			
9	0.35938	0.36328	0.36133	0.00227	0.00391			
10	0.35938	0.36133	0.36035	-0.00018	0.00195			
11	0.36035	0.36133	0.36084	0.00105	0.00098			
12	0.36035	0.36084	0.36060	0.00044	0.00049			
13	0.36035	0.36060	0.36047	0.00013	0.00024			
14	0.36035	0.36047	0.36041	-0.00002	0.00012			
The ro	ot of the equation i	s 0.36041						