Aim: To find the root of an equation using Bisection Method.

Algorithm:

1. Enter the initial guesses: a and b.
2. Enter the accuracy, eps.
3. If $f(a) * f(b)<0$,
then continue,
else
ask the user to enter different values of a and b.
4. While (|a-b|<eps)

Calculate $c=(a+b) / 2$.
If $f(a) * f(c)>0$ $b=c$
Else $a=c$

End While.
5. Print ' c ' which is the required root between $a \& b$.
6. End.

Flow Chart:

Program:

//bisection method
\#include<iostream>
\#include<cmath>
\#include<iomanip>
using namespace std;
double f(double x); //declare the function for the given equation
double f(double x) //define the function here, ie give the equation
\{
double $a=x^{*} x-4.0 ; \quad / /$ write the equation whose root is to be determined
return a;
\}
int main()
\{
cout.precision(5); //set the precision
cout.setf(ios::fixed);
double $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{fa}, \mathrm{fb}, \mathrm{fc}$; //declare some needed variables
a:cout<<"Enter the initial guesses:\na="; //Enter the value of a(set a label('a:') for later use with goto)
cin>>a;
cout<<"\nb="; //Enter the value of b
cin>>b;
cout<<"\nEnter the degree of accuracy desired"<<endl; //Enter the accuracy
cin>>e; //e stands for accuracy

```
    int iter=0;
    if (f(a)*f(b)>0) //Check if a root exists between a and b
    { //lf f(a)*f(b)>0 then the root does not exist between a and b
        cout<<"Please enter a different intial guess"<<endl;
        goto a; //go back to 'a' ie 17 and ask for different values of a and b
    }
    else //else a root exists between a and b
    {
    cout<<"Iter"<<setw(14)<<"a"<<setw(18)<<"b"<<setw(18)<<"c"<<setw(18)<<"f(c)"<<setw(18)<<"|a-
b|"<<endl;
    cout<<"-------------------------------------------------------------------------------------------------------------------
    while (fabs(a-b)>=e) /*if the mod of a-b is greater than the accuracy desired
keep bisecting the interval*/
    {
        c=(a+b)/2.0; //bisect the interval and find the value of c
        fa=f(a);
        fb=f(b);
        fc=f(c);
        iter++;
        cout<<iter<<setw(18)<<a<<setw(18)<<b<<setw(18)<<c<<setw(18)<<fc<<setw(18)<<fabs(a-
b)<<endl;/*print the values of a,b,c and fc after each iteration*/
    if (fc==0) //if f(c)=0, that means we have found the root of the equation
    {
        cout<<"The root of the equation is "<<c<<<endl;; /*print the root of the
equation
                    and end program*/
        return 0;
    }
    if (fa*fc>0) //if f(a)xf(c)>0, that means no root exist between a and c
    {
        a=c; /*hence make a=c, ie make c the starting point of the interval and b
the end point*/
    }
    else if (fa*fc<0)
    {
        b=c; /*this means that a root exist between a and c therfore make c the
end
                    point of the interval*/
    }
    }
    } //The loop ends when the difference between a and b becomes less than the desired
accuracy ie now the value stored in 'c' can be called the approximate root of the equation
    cout<<"The root of the equation is "<<c<<endl;; //print the root
    return 0;
}
```


Output:

For $f(x)=x^{\wedge} \mathbf{2 - 4}$:

Enter the initial guesses: $a=1$					
$b=2.5$					
Enter the degree of accuracy desired					
. 01					
	a	b	c	$f(\mathrm{c}$)	$\|a-b\|$
1	1.00000	2.50000	1.75000	-0.93750	1.50000
2	1.75000	2.50000	2.12500	0.51562	0.75000
3	1.75000	2.12500	1.93750	-0.24609	0.37500
4	1.93750	2.12500	2.03125	0.12598	0.18750
5	1.93750	2.03125	1.98438	-0.06226	0.09375
6	1.98438	2.03125	2.00781	0.03131	0.04688
7	1.98438	2.00781	1.99609	-0.01561	0.02344
8	1.99609	2.00781	2.00195	0.00782	0.01172
	the equa	. 00195			

Enter the initial guesses:
a=3
$\mathrm{b}=4$
Enter the degree of accuracy desired . 00001
Please enter a different intial guess
Enter the initial guesses:
$a=$

For $f(x)=3 x+\sin x-e^{\wedge} x$

