

Aim: To solve a differential equation using Euler’s Method.

Algorithm:

1. Enter the initial values of x and y(x0 and y0).

2. Enter the value of x, for which y is to be determined.

3. Enter the width of the interval, ‘h’.

4. Do:

 y=y0+(h*dy/dx(x0,y0))

 y0=y.

 x0=x0+h

Until (x0>=x)

5. Print y, which is the solution.

Flow Chart:

Start

 Enter x0 and y0

 Enter the width of the interval, h

N

Enter the value of x for which y is to be determined.

 x0=x0+h

y0=y

y=y0+(h*dy/dx(x0,y0))

Is

(x0>=x)?

 Print y, which is the solution

End

Yes

No

Program:

//Eulers Method to solve a differential equation

#include<iostream>

#include<iomanip>

#include<cmath>

using namespace std;

double df(double x, double y) //function for defining dy/dx

{

 double a=x+y; //dy/dx=x+y

 return a;

}

int main()

{

 int n;

 double x0,y0,x,y,h; //for initial values, width, etc.

 cout.precision(5); //for precision

 cout.setf(ios::fixed);

 cout<<"\nEnter the initial values of x and y respectively:\n";

//Initial values

 cin>>x0>>y0;

 cout<<"\nFor what value of x do you want to find the value of y\n";

 cin>>x;

 cout<<"\nEnter the width of the sub-interval:\n"; //input

width

 cin>>h;

 cout<<"x"<<setw(19)<<"y"<<setw(19)<<"dy/dx"<<setw(16)<<"y_new\n";

 cout<<"--\n";

 while(fabs(x-x0)>0.0000001) //I couldn't just write

"while(x0<x)" as they both are floating point nos. It is dangerous to

compare two floating point nos. as they are not the same in binary as they

are in decimal. For instance, a computer cannot exactly represent 0.1 or

0.7 in binary just like decimal can't represent 1/3 exactly without

recurring digits.

 {

 y=y0+(h*df(x0,y0)); //calculate new y, which is

y0+h*dy/dx

 cout<<x0<<setw(16)<<y0<<setw(16)<<df(x0,y0)<<setw(16)<<y<<endl;

 y0=y; //pass this new y as y0 in the next

iteration.

 x0=x0+h; //calculate new x.

 }

 cout<<x0<<setw(16)<<y<<endl;

 cout<<"The approximate value of y at x=0 is "<<y<<endl; //print

the solution.

 return 0;

}

Output:

For dy/dx=-2x-y

For dy/dx=x+y:

