This question paper contains 4 printed pages]

Your Roll No.

9653

B.A./B.Sc. (Hons.)/I

В

MATHEMATICS-Unit III

(Analysis-I)

(Admissions of 2008 and before)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

Each question has three parts (a), (b) and (c).

Section I

- (a) (i) Define supremum of a bounded set of real numbers.
 Show that the supremum of a set S⊆R, whenever it exists, is unique.
 - (ii) Prove that the intersection of two neighbourhoods of a point of R is again a neighbourhood of the same point.
 - (b) Prove that the union of an arbitrary family of open sets is open. Is the result true for the intersection of an arbitrary family of open sets? Justify your answer. 5

(c) Define a closed set of real numbers. Prove that a subset

S of R is closed if and only if it contains all its limit

points.

5

Section II

2. (a) (i) Let $\langle a_n \rangle$ be a sequence such that :

$$a_n \neq 0$$
 for any n and $\frac{a_{n+1}}{a_n} \rightarrow l$.

Prove that if $|l| \le 1$ then $a_n \to 0$ as $n \to \infty$.

(ii) If

$$\lim_{n\to\infty}a_n=a$$

and $a \neq 0$, show that there exists a positive number k and a positive integer m such that $|a_n| > k$, whenever $n \leq m$.

(b) State and prove Monotone Convergence Theorem for sequences. Use it show that the sequence $\langle a_n \rangle$ defined by:

$$a_1 = 1, a_n = 1 + \frac{1}{|2|} + \frac{1}{|3|} + \dots + \frac{1}{|n-1|} \quad \forall \ n \ge 2$$

converges.

(c) Prove that if a sequence $\langle a_n \rangle$ of positive numbers converges to a limit l, then:

$$\lim_{n\to\infty} (a_1 a_2 a_n)^{\frac{1}{n}} = l$$

Deduce that if :

$$b_n = \left(\frac{2}{1} \cdot \left(\frac{3}{2}\right)^2 \cdot \left(\frac{4}{3}\right)^3 \cdot \dots \cdot \left(\frac{n+1}{n}\right)^n\right)^{\frac{1}{n}}$$

then the sequence $\langle b_{\mu} \rangle$ converges to e.

Section III

3. (a) Prove that a necessary condition for convergence of a series $\sum_{n=0}^{\infty} u_n$ is that $u_n \to 0$ as $n \to \infty$.

Hence or otherwise prove that the series :

$$\sqrt{\frac{1}{4}} + \sqrt{\frac{2}{6}} + \dots + \sqrt{\frac{n}{2(n+1)}} + \dots$$

does not converge.

4

(b) State and prove Cauchy's nth root test for the convergence of a positive term series.

(c) Define absolute convergence of a series. Show that an absolutely convergent series is convergent. Give an example to show the converse is not always true.

Section IV

4. (a) If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$, then prove that:

$$(x^2-1)y_{n+2}+(2n+1)xy_{n+1}+(n^2-m^2)y_n=0.$$

(b) (i) If

$$z = \tan^{-1} \frac{x^3 + y^3}{x - y}, \ x \neq y,$$

then show that :

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \sin 2z.$$

(ii) Find the multiple points of the curve:

$$x^4 - 2ay^3 - 3a^2y^2 - 2a^2x^2 + a^4 = 0.$$
 23

(c) Trace the curve :

$$(x^2 + y^2)x - a(x^2 - y^2) = 0$$
 $(a > 0)$. 5