Your Roll No.....

1461

## B.Sc. (Hons.)/I

A

## MATHEMATICS—Paper II

(Analysis-1)

(Admissions of 2009 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

All the questions are compulsory.

Use of basic Calculator is allowed.

- 1. Attempt any two parts:
  - (a) (i) If  $a, b \in \mathbb{R}$ , show that |a + b| = |a| + |b| if and only if  $a, b \ge 0$ .
    - (ii) Let S be a non-empty subset of R that is bounded above and let 'a' be any new number.

Prove that:

21/2

$$\sup(a + S) = a + \sup S$$

where

$$a \dotplus S = \{a + s : s \in S\}.$$

- (b) (i) If  $x \in \mathbb{R}$ , show that there exists  $n \in \mathbb{N}$  such that n > x.
  - (ii) Given any  $x \in \mathbb{R}$ , show that there exists a unique  $n \in \mathbb{Z}$  such that  $n 1 \le x \le n$ .  $2\frac{1}{2}$
- (c) (i) If  $I_n = [a_n, b_n]$ ,  $n \in \mathbb{N}$  is a nested sequence of closed and bounded intervals in  $\mathbb{R}$ , then show that there exists a  $\xi \in \mathbb{R}$  such that : 3

 $\xi \in I_n, \forall n \in \mathbb{N}.$ 

- (ii) Define limit point of a set in  $\mathbf{R}$ . Determine the set of all limit points of the set of all integers.
- 2. Attempt any three parts:
  - (a) Let  $(r_n)$  be a sequence of positive real numbers such that : 5

$$\lim \left(\frac{x_{n+1}}{x_n}\right) = L \quad \text{exists in } \mathbf{R}.$$

If L < 1, prove that:

 $\lim (x_n) = 0.$ 

What happens when L = 1? Justify your answer.

- (b) Determine the following limits and also state all theorems used to evaluate these limits:
  - (i)  $\lim (3\sqrt{n})^{1/2w}$
  - (ii)  $\lim (n!^{1/n^2}).$
- (c) (i) If  $X = (x_n)$  is a sequence of real numbers, show that there is a subsequence of X that is monotone.
  - (ii) Suppose that  $x_n \ge 0$ ,  $\forall n \in \mathbb{N}$  and that  $\lim \left( (-1)^n x_n \right)$  exists in **R**. Show that  $(x_n)$  converges.
- (d) (i) Show that every Cauchy sequence in R is convergent.
  - (ii) If  $x_n = \sqrt{n}$ ,  $n \in \mathbb{N}$ , show that  $(x_n)$  satisfies  $\lim (|x_{n+1} x_n|) = 0$  but that it is not a Cauchy sequence.

- 3. Attempt any two parts:
  - (a) Let  $\Sigma a_k$  and  $\Sigma b_k$  be two infinite series of positive real numbers such that :

$$\lim \left(\frac{a_k}{b_k}\right) = 0.$$

If  $\Sigma b_k$  is convergent prove that  $\Sigma a_k$  is also convergent. Hence or otherwise prove that  $\Sigma (-1)^k \frac{\log k}{k^2}$  is convergent.

- (b) Examine for the convergence, conditionally convergence and absolute convergence of the following series:
  - $(i) \qquad \sum_{2}^{\infty} (-1)^{k} \frac{1}{k \log k}$

(ii) 
$$\Sigma(-1)^k \frac{1}{h^p}, p \in \mathbf{R}$$

- (c) (i) Let  $\Sigma a_k$  be a convergent series in **R**. Prove that  $\lim_{n \to \infty} (a_k) = 0.$ 
  - (ii) Examine for the convergence of the series : 4  $\Sigma \frac{2^k + k}{3^k k} \text{ and } \Sigma \frac{\sin n\alpha + \cos^2 n\alpha}{n^2}, \alpha \in \mathbf{R}.$

- 4. Attempt any three parts :
  - (a) (i) Determine G condition on |x 4| that will assure that:

$$|\sqrt{x}-2|<\frac{1}{2}.$$

(ii). Use the definition of limit to show that:

$$\lim_{x \to 2} (x^2 + 4x) = 12.$$

(b) Prove that:

$$\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$$

does not exist but that :

$$\lim_{x\to 0} x \cos\frac{1}{x} = 0.$$

5

- (c) Let  $A \subseteq \mathbb{R}$ ,  $f : A \to \mathbb{R}$  and  $C \in A$ . If f is continuous at C, show that for every sequence  $(x_n)$  in A that converges to C, the sequence  $(f(x_n))$  converges to f(C).
  - (ii) Let  $f: \mathbf{R} \to \mathbf{R}$  be defined as:

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \in \mathbb{R}, \mathbb{Q} \end{cases}$$

Show that f is discontinuous at every

- (d) (i) Let I = [a, b] be a closed and bounded interval and let  $f: I \to \mathbb{R}$  be continuous on I. Prove that 'f' has an absolute maximum on I.
  - (ii) Let I = [a, b] be a closed and bounded interval and let  $f: I \to \mathbb{R}$  be continuous I such that f(x) > 0 for each  $x \in I$ . Prove that there exists a real number  $\alpha > 0$  such that  $f(x) \ge \alpha$  for all  $x \in I$ .

## 5. Attempt any two parts:

- (a) If f: A → R is uniformly continuous on a subset A
   of R, show that 'f' is continuous on A. Show by means of an example that a continuous function on A may
   not be uniformly continuous on A.
- (b) Use mean value theorem to prove: 3,3
  - (i)  $|\sin x \sin y| \le |x y|$  for all x, y in  $\mathbb{R}$ .
  - (ii)  $\frac{x-1}{x} < \ln x < x-1 \text{ for } x > 1.$

(c) Suppose that  $f: [0, 2] \rightarrow \mathbb{R}$  is continuous on [0, 2]

$$f(0) = 0, f(1) = 1, f(2) = 1.$$

- (i) Show that there exists  $C_1 \in (0, 1)$  such that  $f'(C_1) = 1$ .
- (ii) Show that there exists  $C_2 \in (1, 2)$  such that  $f'(C_2) = 0$ .
- (iii) Show that there exists  $C_3 \in (0, 2)$  such that f'(C) = 1/3.
- 6. Attempt any two parts:
  - (a) Obtain Maclaurin's series expansion of :

$$(i) f(x) = \sin x, x \in \mathbf{R}$$

(ii) 
$$f(x) = (1 + x)^m$$
,  $x \in \mathbb{R}$  and  $m \in \mathbb{N}$ .

(b) Use Taylor's theorem to approximate  $\sqrt[3]{1+x}$ , x>-1 by means of a polynomial of degree 2. Further use this polynomial to obtain approximation for  $\sqrt[3]{1.3}$ .

| (c) | (i) · | Approximate | the | number e | with | error | less | than |
|-----|-------|-------------|-----|----------|------|-------|------|------|
|     |       | 10-5        |     |          |      |       |      |      |
|     |       | 10 .        |     |          |      |       |      | 21/2 |

(ii) Define and explain geometrically a convex function on an interval  $I \subseteq \mathbb{R}$ . Also state the result between a convex function f and its second derivative f", assuming that f" exists on I.

1461