TiO2 (Rutile) – DFT Study

Crystal Structure:

TiO2 (Rutile)

About/Help

CIF Source:
Meagher E P, Lager G A
The Canadian Mineralogist 17 (1979) 77-85
Polyhedral thermal expansion in the TiO2 polymorphs: Refinement
of the crystal structure of rutile and brookite at high temperature
Sample at 600 degrees C
_database_code_amcsd 0005166
4.616 4.616 2.977 90 90 90 P4_2/mnm

http://rruff.geo.arizona.edu/AMS/download.php?id=05870.cif&down=cif

Simulated Powder XRD using VESTA:

X-Ray Wavelength: 1.54059 Angstrom

Powder XRD pattern simulation of TiO2 (Rutile)

Simulation 1: GGA

Pseudopotential Used:
Ti.pbe-spn-kjpaw_psl.1.0.0.UPF
O.pbe-n-kjpaw_psl.1.0.0.UPF

PP Type: Ultrasoft
Exchange Correlation Functional: PBE-GGA
Non-linear core corrections are used.

Wavefunction Energy Cutoff: 51 Ry
Charge Density Energy Cutoff: 561 Ry
k – mesh: 8x8x8
Run Type: GGA-PBE

Total Energy vs Cutoff:

Cutoff(Ry)       Total Energy(Ry)

30                    -534.25360543
35                   -534.68616320
40                   -534.78130295
45                   -534.80017080
50                   -534.80392479
51                   -534.80436774
53                   -534.80522769
55                   -534.80611408

Optimized Coordinates and Lattice Parameters:

CELL_PARAMETERS {angstrom}

4.644336           -0.000037          0.000000
-0.000037          4.644336          0.000000
0.000000          0.000000          2.969167

ATOMIC_POSITIONS {angstrom}

Ti         0.000000         0.000000         0.000000
Ti         2.3221         50 2.322150          1.484584
O         1.416216         1.416216          0.000000
O         3.228083         3.228083          0.000000
O         3.738386         0.905913         1.484584
O          0.905913         3.738386         1.484584

Bandstructure:

Bandstructure along high-symmetry points of TiO2 (Rutile)

Band-gap: 1.8 eV (approx.)

Density of States(DOS):

Total and Projected Density of States of TiO2 (Rutile)

Input Files:

 

Acknowledgements:

I acknowledge the use of the following tools and packages in order to produce the above simulations.
Quantum Espresso(for DFT based simulations): http://www.quantum-espresso.org/
BURAI(for visualization and as a GUI for QE): http://nisihara.wixsite.com/burai
VESTA(for visualization and XRD simulations): http://jp-minerals.org/vesta/en/

References and Resources

https://en.wikipedia.org/wiki/Rutile

https://www.researchgate.net/publication/51554133_DFT_U_Calculations_of_Crystal_Lattice_Electronic_Structure_and_Phase_Stability_under_Pressure_of_TiO2_Polymorphs

https://www.sciencedirect.com/science/article/pii/S0022369716300452

PhD researcher at Friedrich-Schiller University Jena, Germany. I'm a physicist specializing in theoretical, computational and experimental condensed matter physics. I like to develop Physics related apps and softwares from time to time. Can code in most of the popular languages. Like to share my knowledge in Physics and applications using this Blog and a YouTube channel.
[wpedon id="7041" align="center"]

11 thoughts on “TiO2 (Rutile) – DFT Study

  1. Hi Mr.Sharma, would you mind sharing me the pseudo file you used especially the O
    pbe-n-kjpaw_psl.1.0.0.UPF and probably the download link? I would like to know if thereis the same type of pseudo for N and other atoms.
    Many thanks

  2. Hello, Atomic positions for one of the Ti atoms relaxed from 2.308000 (input file, b lattice vector) to
    50 2.322150 (output file, b lattice vector) value. How is it possible?
    Can you please explain?

    1. Hi
      Thanks for spotting it. It seems to be a typo. I guess “50” won’t be there.

  3. Thank you for your quick response.
    I am very new learner of quantum expresso.
    Can you please upload your DFT file as videos in your YouTube channel.
    It will be very useful for new learner.
    Thank you..

  4. Hello, Manas
    I followed your steps for this Rutile phase of TiO2. I got the different results of DoS and Bands. can u please suggest where I did a mistake? Thank you

    Input details:
    Scf:
    &CONTROL
    calculation = “scf”
    max_seconds = 8.64000e+04
    pseudo_dir = “C:\Users\WCU CAD.DESKTOP-96NE124\.burai\.pseudopot”
    /

    &SYSTEM
    a = 4.64238e+00
    angle1(1) = 0.00000e+00
    angle2(1) = 0.00000e+00
    c = 2.97211e+00
    constrained_magnetization = “none”
    degauss = 1.00000e-02
    ecutrho = 5.61000e+02
    ecutwfc = 5.10000e+01
    ibrav = 6
    nat = 6
    nbnd = 42
    nspin = 1
    ntyp = 2
    occupations = “smearing”
    smearing = “gaussian”
    starting_magnetization(1) = 0.00000e+00
    /

    &ELECTRONS
    conv_thr = 1.00000e-06
    electron_maxstep = 200
    mixing_beta = 4.00000e-01
    startingpot = “atomic”
    startingwfc = “atomic+random”
    /

    K_POINTS {automatic}
    8 8 8 0 0 0

    ATOMIC_SPECIES
    Ti 47.86700 Ti.pbe-spn-kjpaw_psl.1.0.0.UPF
    O 15.99940 O.pbe-n-kjpaw_psl.1.0.0.UPF

    ATOMIC_POSITIONS {angstrom}
    Ti 0.000000 0.000000 0.000000
    Ti 2.321207 2.321207 1.486054
    O 1.415619 1.415619 0.000000
    O 3.226795 3.226795 0.000000
    O 3.736807 0.905607 1.486054
    O 0.905607 3.736807 1.486054

    DoS input:
    &CONTROL
    calculation = “nscf”
    max_seconds = 8.64000e+04
    pseudo_dir = “C:\Users\WCU CAD.DESKTOP-96NE124\.burai\.pseudopot”
    /

    &SYSTEM
    a = 4.64238e+00
    angle1(1) = 0.00000e+00
    angle2(1) = 0.00000e+00
    c = 2.97211e+00
    constrained_magnetization = “none”
    degauss = 1.00000e-02
    ecutrho = 5.61000e+02
    ecutwfc = 5.10000e+01
    ibrav = 6
    nat = 6
    nbnd = 42
    nspin = 1
    ntyp = 2
    occupations = “smearing”
    smearing = “gaussian”
    starting_magnetization(1) = 0.00000e+00
    starting_magnetization(2) = 0.00000e+00
    /

    &ELECTRONS
    conv_thr = 1.00000e-06
    electron_maxstep = 200
    mixing_beta = 4.00000e-01
    startingpot = “atomic”
    startingwfc = “atomic+random”
    /

    &DOS
    degauss = 1.00000e-02
    deltae = 1.00000e-02
    emax = 5.00000e+01
    emin = -5.00000e+01
    ngauss = 0
    /

    &PROJWFC
    degauss = 1.00000e-02
    deltae = 1.00000e-02
    emax = 5.00000e+01
    emin = -5.00000e+01
    ngauss = 0
    /

    K_POINTS {automatic}
    8 8 8 0 0 0

    ATOMIC_SPECIES
    Ti 47.86700 Ti.pbe-spn-kjpaw_psl.1.0.0.UPF
    O 15.99940 O.pbe-n-kjpaw_psl.1.0.0.UPF

    ATOMIC_POSITIONS {angstrom}
    Ti 0.000000 0.000000 0.000000
    Ti 2.321207 2.321207 1.486054
    O 1.415619 1.415619 0.000000
    O 3.226795 3.226795 0.000000
    O 3.736807 0.905607 1.486054
    O 0.905607 3.736807 1.486054

    Bands input:
    &CONTROL
    calculation = “bands”
    max_seconds = 8.64000e+04
    pseudo_dir = “C:\Users\WCU CAD.DESKTOP-96NE124\.burai\.pseudopot”
    /

    &SYSTEM
    a = 4.64238e+00
    angle1(1) = 0.00000e+00
    angle2(1) = 0.00000e+00
    c = 2.97211e+00
    constrained_magnetization = “none”
    degauss = 1.00000e-02
    ecutrho = 5.61000e+02
    ecutwfc = 5.10000e+01
    ibrav = 6
    nat = 6
    nbnd = 42
    nspin = 1
    ntyp = 2
    occupations = “smearing”
    smearing = “gaussian”
    starting_magnetization(1) = 0.00000e+00
    starting_magnetization(2) = 0.00000e+00
    /

    &ELECTRONS
    conv_thr = 1.00000e-06
    electron_maxstep = 200
    mixing_beta = 4.00000e-01
    startingpot = “atomic”
    startingwfc = “atomic+random”
    /

    &BANDS
    lsym = .FALSE.
    spin_component = 1
    /

    K_POINTS {tpiba_b}
    12
    gG 20
    X 20
    M 20
    gG 20
    Z 20
    R 20
    A 20
    Z 0
    X 20
    R 0
    M 20
    A 0

    ATOMIC_SPECIES
    Ti 47.86700 Ti.pbe-spn-kjpaw_psl.1.0.0.UPF
    O 15.99940 O.pbe-n-kjpaw_psl.1.0.0.UPF

    ATOMIC_POSITIONS {angstrom}
    Ti 0.000000 0.000000 0.000000
    Ti 2.321207 2.321207 1.486054
    O 1.415619 1.415619 0.000000
    O 3.226795 3.226795 0.000000
    O 3.736807 0.905607 1.486054
    O 0.905607 3.736807 1.486054

    Here I am unable to attach the results pictures.
    I am waiting for your kind suggestion.
    Thank you

  5. Hello Manas,
    Thank you for your kind suggestions.
    I got the DoS and bandstructure match with your results.

    I have changed the pseudopotential to ultra-soft rrkjus not to change smearing. If I changed smearing to fixed it showed an error.

    pseudopotential:
    Ti.pbe-spn-rrkjus_psl.1.0.0.UPF
    O.pbe-n-rrkjus_psl.1.0.0.UPF

    Thank you,
    Email: [email protected]

    1. That’s good to hear. Just a word of advice. Whenever comparing your results with literature, make sure that you use the same XC functional as well as the Pseudopotential in Quantum ESPRESSO. These can make the results different. Also, ensure that you have converged your SCF energy and k-points. Then you will always be able to get same results as in literature.

Leave a Reply

Your email address will not be published. Required fields are marked *