Crystal Structure:
TiO2 (Rutile) |
About/Help |
CIF Source:
Meagher E P, Lager G A
The Canadian Mineralogist 17 (1979) 77-85
Polyhedral thermal expansion in the TiO2 polymorphs: Refinement
of the crystal structure of rutile and brookite at high temperature
Sample at 600 degrees C
_database_code_amcsd 0005166
4.616 4.616 2.977 90 90 90 P4_2/mnm
http://rruff.geo.arizona.edu/AMS/download.php?id=05870.cif&down=cif
Simulated Powder XRD using VESTA:
X-Ray Wavelength: 1.54059 Angstrom

Simulation 1: GGA
Pseudopotential Used:
Ti.pbe-spn-kjpaw_psl.1.0.0.UPF
O.pbe-n-kjpaw_psl.1.0.0.UPF
PP Type: Ultrasoft
Exchange Correlation Functional: PBE-GGA
Non-linear core corrections are used.
Wavefunction Energy Cutoff: 51 Ry
Charge Density Energy Cutoff: 561 Ry
k – mesh: 8x8x8
Run Type: GGA-PBE
Total Energy vs Cutoff:
Cutoff(Ry) Total Energy(Ry)
30 -534.25360543
35 -534.68616320
40 -534.78130295
45 -534.80017080
50 -534.80392479
51 -534.80436774
53 -534.80522769
55 -534.80611408
Optimized Coordinates and Lattice Parameters:
CELL_PARAMETERS {angstrom}
4.644336 -0.000037 0.000000
-0.000037 4.644336 0.000000
0.000000 0.000000 2.969167
ATOMIC_POSITIONS {angstrom}
Ti 0.000000 0.000000 0.000000
Ti 2.3221 50 2.322150 1.484584
O 1.416216 1.416216 0.000000
O 3.228083 3.228083 0.000000
O 3.738386 0.905913 1.484584
O 0.905913 3.738386 1.484584
Bandstructure:

Band-gap: 1.8 eV (approx.)
Density of States(DOS):

Input Files:
Acknowledgements:
I acknowledge the use of the following tools and packages in order to produce the above simulations.
Quantum Espresso(for DFT based simulations): http://www.quantum-espresso.org/
BURAI(for visualization and as a GUI for QE): http://nisihara.wixsite.com/burai
VESTA(for visualization and XRD simulations): http://jp-minerals.org/vesta/en/
References and Resources
https://en.wikipedia.org/wiki/Rutile
https://www.sciencedirect.com/science/article/pii/S0022369716300452
Ph.D. researcher at Friedrich-Schiller University Jena, Germany. I’m a physicist specializing in computational material science. I write efficient codes for simulating light-matter interactions at atomic scales. I like to develop Physics, DFT, and Machine Learning related apps and software from time to time. Can code in most of the popular languages. I like to share my knowledge in Physics and applications using this Blog and a YouTube channel.
Hi Mr.Sharma, would you mind sharing me the pseudo file you used especially the O
pbe-n-kjpaw_psl.1.0.0.UPF and probably the download link? I would like to know if thereis the same type of pseudo for N and other atoms.
Many thanks
http://www.quantum-espresso.org/pseudopotentials/ps-library/o
You can find more pseudopotentials here: http://www.quantum-espresso.org/pseudopotentials
and https://dalcorso.github.io/pslibrary/
Hi Mr. Sharma, Could you share the input files for TiO2 rutile for quantum espresso? I could not find it on this page: https://www.bragitoff.com/2017/12/tio2-rutile-dft-study/
There is a section called Input files, but I cannot see/find the link.
Thanks,
Best regards,
Hello, Atomic positions for one of the Ti atoms relaxed from 2.308000 (input file, b lattice vector) to
50 2.322150 (output file, b lattice vector) value. How is it possible?
Can you please explain?
Hi
Thanks for spotting it. It seems to be a typo. I guess “50” won’t be there.
Thank you for your quick response.
I am very new learner of quantum expresso.
Can you please upload your DFT file as videos in your YouTube channel.
It will be very useful for new learner.
Thank you..
Hello, Manas
I followed your steps for this Rutile phase of TiO2. I got the different results of DoS and Bands. can u please suggest where I did a mistake? Thank you
Input details:
Scf:
&CONTROL
calculation = “scf”
max_seconds = 8.64000e+04
pseudo_dir = “C:\Users\WCU CAD.DESKTOP-96NE124\.burai\.pseudopot”
/
&SYSTEM
a = 4.64238e+00
angle1(1) = 0.00000e+00
angle2(1) = 0.00000e+00
c = 2.97211e+00
constrained_magnetization = “none”
degauss = 1.00000e-02
ecutrho = 5.61000e+02
ecutwfc = 5.10000e+01
ibrav = 6
nat = 6
nbnd = 42
nspin = 1
ntyp = 2
occupations = “smearing”
smearing = “gaussian”
starting_magnetization(1) = 0.00000e+00
/
&ELECTRONS
conv_thr = 1.00000e-06
electron_maxstep = 200
mixing_beta = 4.00000e-01
startingpot = “atomic”
startingwfc = “atomic+random”
/
K_POINTS {automatic}
8 8 8 0 0 0
ATOMIC_SPECIES
Ti 47.86700 Ti.pbe-spn-kjpaw_psl.1.0.0.UPF
O 15.99940 O.pbe-n-kjpaw_psl.1.0.0.UPF
ATOMIC_POSITIONS {angstrom}
Ti 0.000000 0.000000 0.000000
Ti 2.321207 2.321207 1.486054
O 1.415619 1.415619 0.000000
O 3.226795 3.226795 0.000000
O 3.736807 0.905607 1.486054
O 0.905607 3.736807 1.486054
DoS input:
&CONTROL
calculation = “nscf”
max_seconds = 8.64000e+04
pseudo_dir = “C:\Users\WCU CAD.DESKTOP-96NE124\.burai\.pseudopot”
/
&SYSTEM
a = 4.64238e+00
angle1(1) = 0.00000e+00
angle2(1) = 0.00000e+00
c = 2.97211e+00
constrained_magnetization = “none”
degauss = 1.00000e-02
ecutrho = 5.61000e+02
ecutwfc = 5.10000e+01
ibrav = 6
nat = 6
nbnd = 42
nspin = 1
ntyp = 2
occupations = “smearing”
smearing = “gaussian”
starting_magnetization(1) = 0.00000e+00
starting_magnetization(2) = 0.00000e+00
/
&ELECTRONS
conv_thr = 1.00000e-06
electron_maxstep = 200
mixing_beta = 4.00000e-01
startingpot = “atomic”
startingwfc = “atomic+random”
/
&DOS
degauss = 1.00000e-02
deltae = 1.00000e-02
emax = 5.00000e+01
emin = -5.00000e+01
ngauss = 0
/
&PROJWFC
degauss = 1.00000e-02
deltae = 1.00000e-02
emax = 5.00000e+01
emin = -5.00000e+01
ngauss = 0
/
K_POINTS {automatic}
8 8 8 0 0 0
ATOMIC_SPECIES
Ti 47.86700 Ti.pbe-spn-kjpaw_psl.1.0.0.UPF
O 15.99940 O.pbe-n-kjpaw_psl.1.0.0.UPF
ATOMIC_POSITIONS {angstrom}
Ti 0.000000 0.000000 0.000000
Ti 2.321207 2.321207 1.486054
O 1.415619 1.415619 0.000000
O 3.226795 3.226795 0.000000
O 3.736807 0.905607 1.486054
O 0.905607 3.736807 1.486054
Bands input:
&CONTROL
calculation = “bands”
max_seconds = 8.64000e+04
pseudo_dir = “C:\Users\WCU CAD.DESKTOP-96NE124\.burai\.pseudopot”
/
&SYSTEM
a = 4.64238e+00
angle1(1) = 0.00000e+00
angle2(1) = 0.00000e+00
c = 2.97211e+00
constrained_magnetization = “none”
degauss = 1.00000e-02
ecutrho = 5.61000e+02
ecutwfc = 5.10000e+01
ibrav = 6
nat = 6
nbnd = 42
nspin = 1
ntyp = 2
occupations = “smearing”
smearing = “gaussian”
starting_magnetization(1) = 0.00000e+00
starting_magnetization(2) = 0.00000e+00
/
&ELECTRONS
conv_thr = 1.00000e-06
electron_maxstep = 200
mixing_beta = 4.00000e-01
startingpot = “atomic”
startingwfc = “atomic+random”
/
&BANDS
lsym = .FALSE.
spin_component = 1
/
K_POINTS {tpiba_b}
12
gG 20
X 20
M 20
gG 20
Z 20
R 20
A 20
Z 0
X 20
R 0
M 20
A 0
ATOMIC_SPECIES
Ti 47.86700 Ti.pbe-spn-kjpaw_psl.1.0.0.UPF
O 15.99940 O.pbe-n-kjpaw_psl.1.0.0.UPF
ATOMIC_POSITIONS {angstrom}
Ti 0.000000 0.000000 0.000000
Ti 2.321207 2.321207 1.486054
O 1.415619 1.415619 0.000000
O 3.226795 3.226795 0.000000
O 3.736807 0.905607 1.486054
O 0.905607 3.736807 1.486054
Here I am unable to attach the results pictures.
I am waiting for your kind suggestion.
Thank you
My band structure and DOS matches those given here: https://materialsproject.org/materials/mp-2657/
The only difference I can see is that I probably used ultra soft rrkjus pesudopotentials and occupations=”fixed”
Can you give me your email, so we can talk there.
Hello Manas,
Thank you for your kind suggestions.
I got the DoS and bandstructure match with your results.
I have changed the pseudopotential to ultra-soft rrkjus not to change smearing. If I changed smearing to fixed it showed an error.
pseudopotential:
Ti.pbe-spn-rrkjus_psl.1.0.0.UPF
O.pbe-n-rrkjus_psl.1.0.0.UPF
Thank you,
Email: [email protected]
That’s good to hear. Just a word of advice. Whenever comparing your results with literature, make sure that you use the same XC functional as well as the Pseudopotential in Quantum ESPRESSO. These can make the results different. Also, ensure that you have converged your SCF energy and k-points. Then you will always be able to get same results as in literature.
Dear Manas,
Thank you for your kind suggestions.
1) Can we perform band structure determination and DOS for composite materials. For example [email protected] or [email protected], etc. How to go about it.?
2) Can we find the different band structures for various carbon based materials like graphene, graphene oxide, carbon nanotubes, carbon quantum dots, etc..?
Dear Sir, Could you please guide me to calculate the spin electron density of nanoribbons in quantumatk or in general.
If possible share it on [email protected].
Thanks a lot Sir