//Gauss Elimination
#include<iostream>
#include<iomanip>
using namespace std;
int main()
{
 int n,i,j,k;
 cout.precision(4); //set precision
 cout.setf(ios::fixed);
 cout << "Enter the no. of equations\n";
 cin >> n; //input the no. of equations
 float a[n][n+1],x[n]; //declare an array to store the elements of augmented-matrix
 cout << "Enter the elements of the augmented-matrix row-wise:\n";
 for (i=0;i<n;i++) //input the elements of array
 for (j=0;j<=n;j++)
 cin >> a[i][j];
 for (i=0;i<n;i++) //Pivotisation
 for (k=i+1;k<n;k++)
 if (abs(a[i][i])<abs(a[k][i]))
 for (j=0;j<=n;j++)
 {
 double temp=a[i][j];
 a[i][j]=a[k][j];
 a[k][j]=temp;
 }
 cout << "The matrix after Pivotisation is:\n";
 for (i=0;i<n;i++) //print the new matrix
 {
 for (j=0;j<=n;j++)
 cout << a[i][j] << setw(16);
 cout << "\n";
 }
 for (i=0;i<n-1;i++) //loop to perform the gauss elimination
 for (k=i+1;k<n;k++)
 {
 double t=a[k][i]/a[i][i];
 for (j=0;j<=n;j++)
 a[k][j]=a[k][j]-t*a[i][j]; //make the elements below the pivot elements equal to zero or eliminate the variables
 }
 cout << "The matrix after gauss-elimination is as follows:\n";
 for (i=0;i<n;i++) //print the new matrix
 {
 for (j=0;j<=n;j++)
 cout << a[i][j] << setw(16);
 cout << "\n";
 }
 for (i=n-1;i>=0;i--) //back-substitution
 {
 //x is an array whose values correspond to the values of x,y,z...
 }
C++ Program for Gauss-Elimination for solving a System of Linear Equations

```c++
曼斯·夏尔马

```x[i]=a[i][n]; //make the variable to be calculated equal to the rhs of the last equation
 for (j=i+1;j<n;j++)
 if (j!=i) //then subtract all the lhs values except the coefficient of the variable whose value is being calculated
 x[i]=x[i]-a[i][j]*x[j];
 x[i]=x[i]/a[i][i]; //now finally divide the rhs by the coefficient of the variable to be calculated
}
cout<<"The values of the variables are as follows:
";
for (i=0;i<n;i++)
 cout<<x[i]<<endl; // Print the values of x, y, z,
return 0;
}
```

The matrix after Pivotisation is:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0000</td>
<td>1.0000</td>
<td>-6.0000</td>
<td>-5.0000</td>
<td>6.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>2.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.0000</td>
<td>2.0000</td>
<td>3.0000</td>
<td>2.0000</td>
<td>-2.0000</td>
</tr>
<tr>
<td>4.0000</td>
<td>-3.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>-7.0000</td>
</tr>
</tbody>
</table>

The matrix after Gauss-Elimination is as follows:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0000</td>
<td>1.0000</td>
<td>-6.0000</td>
<td>-5.0000</td>
<td>6.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>2.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>5.0000</td>
<td>2.8333</td>
<td>-4.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>3.9000</td>
<td>-7.8000</td>
</tr>
</tbody>
</table>

The values of the variables are as follows:

-0.5000
1.0000
0.3333
-2.0000
C++ Program for Gauss-Elimination for solving a System of Linear Equations | 3

The matrix after Pivotisation is:
\[
\begin{bmatrix}
4.0000 & -2.0000 & 1.0000 & 15.0000 \\
-3.0000 & -1.0000 & 4.0000 & 8.0000 \\
1.0000 & -1.0000 & 3.0000 & 13.0000 \\
\end{bmatrix}
\]

The matrix after gauss-elimination is as follows:
\[
\begin{bmatrix}
4.0000 & -2.0000 & 1.0000 & 15.0000 \\
0.0000 & -2.5000 & 4.7500 & 19.2500 \\
0.0000 & 0.0000 & 1.8000 & 5.4000 \\
\end{bmatrix}
\]

The values of the variables are as follows:
\[
\begin{align*}
& 2.0000 \\
& -2.0000 \\
& 3.0000 \\
\end{align*}
\]

Sample 2

Tutorial Video:

Manas Sharma

PhD researcher at Friedrich-Schiller University Jena, Germany. I'm a physicist specializing in theoretical, computational and experimental condensed matter physics. I like to develop Physics related apps and softwares from time to time. Can code in most of the popular languages. Like to share my knowledge in Physics and applications using this Blog and a YouTube channel.