// Gauss Elimination
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
 int n, i, j, k;
 cout.precision(4); // set precision
 cout.setf(ios::fixed);
 cout << "Enter the no. of equations\n";
 cin >> n; // input the no. of equations
 float a[n][n + 1], x[n]; // declare an array to store the elements of augmented-matrix
 cout << "Enter the elements of the augmented-matrix row-wise:\n";
 for (i = 0; i < n; i++)
 {
 for (j = 0; j <= n; j++)
 cin >> a[i][j]; // input the elements of array
 }
 for (i = 0; i < n; i++) // Pivotisation
 {
 for (k = i + 1; k < n; k++)
 if (abs(a[i][i]) < abs(a[k][i]))
 for (j = 0; j <= n; j++)
 {
 double temp = a[i][j];
 a[i][j] = a[k][j];
 a[k][j] = temp;
 }
 }
 cout << "The matrix after Pivotisation is:\n";
 for (i = 0; i < n; i++) // print the new matrix
 {
 for (j = 0; j <= n; j++)
 cout << a[i][j] << setw(16);
 cout << \n;
 }
 for (i = 0; i < n - 1; i++) // loop to perform the gauss elimination
 {
 for (k = i + 1; k < n; k++)
 {
 double t = a[k][i] / a[i][i];
 for (j = 0; j <= n; j++)
 a[k][j] = a[k][j] - t * a[i][j]; // make the elements below the pivot elements equal to zero or eliminate the variables
 }
 }
 cout << "The matrix after gauss-elimination is as follows:\n";
 for (i = 0; i < n; i++) // print the new matrix
 {
 for (j = 0; j <= n; j++)
 cout << a[i][j] << setw(16);
 cout << \n;
 }
 for (i = n - 1; i >= 0; i--) // back-substitution
 {
 // x is an array whose values correspond to the values of x, y, z.
 }
}

Manas Sharma (c) Bragitoff.com
x[i]=a[i][n]; //make the variable to be calculated equal to the
rhs of the last equation
for (j=i+1;j<n;j++) //then subtract all the lhs values except the
if (j!=i) //coefficient of the variable whose value
 x[i]=x[i]-a[i][j]*x[j]; //is being
calculated
 x[i]=x[i]/a[i][i]; //now finally divide the rhs by the coefficient
of the variable to be calculated
}
cout<<"\nThe values of the variables are as follows:\n";
for (i=0;i<n;i++)
 cout<<x[i]<<endl; // Print the values of x, y, z,
return 0;
}

The matrix after Pivotisation is:
6.0000 1.0000 -6.0000 -5.0000 6.0000
0.0000 2.0000 0.0000 1.0000 0.0000
2.0000 2.0000 3.0000 2.0000 -2.0000
4.0000 -3.0000 0.0000 1.0000 -7.0000

The matrix after gauss-elimination is as follows:
6.0000 1.0000 -6.0000 -5.0000 6.0000
0.0000 2.0000 0.0000 1.0000 0.0000
0.0000 0.0000 5.0000 2.8333 -4.0000
0.0000 0.0000 3.0000 3.9000 -7.8000

The values of the variables are as follows:
-0.5000
1.0000
0.3333
-2.0000
C++ Program for Gauss-Elimination for solving a System of Linear Equations | 3

Sample 2

Tutorial Video:

Manas Sharma

PhD researcher at Friedrich-Schiller University Jena, Germany. I'm a physicist specializing in theoretical, computational and experimental condensed matter physics. I like to develop Physics related apps and softwares from time to time. Can code in most of the popular languages. Like to share my knowledge in Physics and applications using this Blog and a YouTube channel.