//Gauss Elimination
#include<iostream>
#include<iomanip>
using namespace std;

int main()
{
 int n,i,j,k;
 cout.precision(4); //set precision
 cout.setf(ios::fixed);
 cout<<"\nEnter the no. of equations\n";
 cin>>n; //input the no. of equations
 float a[n][n+1],x[n]; //declare an array to store the elements of augmented-matrix
 cout<<"\nEnter the elements of the augmented-matrix row-wise:\n";
 for (i=0;i<n;i++)
 for (j=0;j<=n;j++)
 cin>>a[i][j]; //input the elements of array
 for (i=0;i<n;i++) //Pivotisation
 for (k=i+1;k<n;k++)
 if (abs(a[i][i])<abs(a[k][i]))
 for (j=0;j<=n;j++)
 {
 double temp=a[i][j];
 a[i][j]=a[k][j];
 a[k][j]=temp;
 }
 cout<<"\nThe matrix after Pivotisation is:\n";
 for (i=0;i<n;i++) //print the new matrix
 {
 for (j=0;j<=n;j++)
 cout<<a[i][j]<<setw(16);
 cout<<"\n";
 }
 for (i=0;i<n-1;i++) //loop to perform the gauss elimination
 for (k=i+1;k<n;k++)
 { double t=a[k][i]/a[i][i];
 for (j=0;j<=n;j++)
 a[k][j]=a[k][j]-t*a[i][j]; //make the elements below the pivot elements equal to zero or eliminate the variables
 }
 cout<<"\n\nThe matrix after gauss-elimination is as follows:\n";
 for (i=0;i<n;i++) //print the new matrix
 {
 for (j=0;j<=n;j++)
 cout<<a[i][j]<<setw(16);
 cout<<"\n";
 }
 for (i=n-1;i>=0;i--) //back-substitution
 {
 //x is an array whose values correspond to the values of
 x,y,z..
 }
}
C++ Program for Gauss-Elimination for solving a System of Linear Equations

```cpp
x[i]=a[i][n];              //make the variable to be calculated equal to the rhs of the last equation
for (j=i+1;j<n;j++)
    if (j!=i)            //then subtract all the lhs values except the
coefficient of the variable whose value is being calculated
    x[i]=x[i]-a[i][j]*x[j];
    x[i]=x[i]/a[i][i];    //now finally divide the rhs by the coefficient of the variable to be calculated
}
cout<<"\nThe values of the variables are as follows:\n";
for (i=0;i<n;i++)
    cout<<x[i]<<endl;    // Print the values of x, y,z,....
return 0;
}
```

The matrix after Pivotisation is:

<table>
<thead>
<tr>
<th></th>
<th>6.0000</th>
<th>1.0000</th>
<th>-6.0000</th>
<th>-5.0000</th>
<th>6.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>2.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>2.0000</td>
<td>2.0000</td>
<td>3.0000</td>
<td>2.0000</td>
<td>-2.0000</td>
<td></td>
</tr>
<tr>
<td>4.0000</td>
<td>-3.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>-7.0000</td>
<td></td>
</tr>
</tbody>
</table>

The matrix after gaussian elimination is as follows:

<table>
<thead>
<tr>
<th></th>
<th>6.0000</th>
<th>1.0000</th>
<th>-6.0000</th>
<th>-5.0000</th>
<th>6.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>2.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>5.0000</td>
<td>2.8333</td>
<td>-4.0000</td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>3.9600</td>
<td>-7.8060</td>
<td></td>
</tr>
</tbody>
</table>

The values of the variables are as follows:
-0.5000
1.0000
0.3333
-2.0000

Sample 1
The matrix after Pivotisation is:

\[
\begin{bmatrix}
4.0000 & -2.0000 & 1.0000 & 15.0000 \\
-3.0000 & -1.0000 & 4.0000 & 8.0000 \\
1.0000 & -1.0000 & 3.0000 & 13.0000 \\
\end{bmatrix}
\]

The matrix after gauss-elimination is as follows:

\[
\begin{bmatrix}
4.0000 & -2.0000 & 1.0000 & 15.0000 \\
0.0000 & -2.5000 & 4.7500 & 19.2500 \\
0.0000 & 0.0000 & 1.8000 & 5.4000 \\
\end{bmatrix}
\]

The values of the variables are as follows:

\[
\begin{bmatrix}
2.0000 \\
-2.0000 \\
3.0000 \\
\end{bmatrix}
\]

Sample 2

Tutorial Video:

Manas Sharma
PhD researcher at Friedrich-Schiller University Jena, Germany. I'm a physicist specializing in theoretical, computational and experimental condensed matter physics. I like to develop Physics related apps and softwares from time to time. Can code in most of the popular languages. Like to share my knowledge in Physics and applications using this Blog and a YouTube channel.

Share this:

Click to share on Facebook (Opens in new window)
Click to share on Twitter (Opens in new window)
Click to share on Google+ (Opens in new window)
Click to share on WhatsApp (Opens in new window)
Click to share on Pinterest (Opens in new window)
Click to share on Reddit (Opens in new window)
Click to share on LinkedIn (Opens in new window)
Click to share on Skype (Opens in new window)
Click to email this to a friend (Opens in new window)
Click to print (Opens in new window)
Click to share on Tumblr (Opens in new window)
Click to share on Pocket (Opens in new window)
Click to share on Telegram (Opens in new window)
C++ Program for Gauss-Elimination for solving a System of Linear Equations | 4

Consider donating if you found the information useful
Appreciate your blog: $3